实验三 朴素贝叶斯
Posted 18***
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了实验三 朴素贝叶斯相关的知识,希望对你有一定的参考价值。
博客班级 | AHPU机器学习 |
---|---|
作业要求 | 作业要求 |
作业目标 | 朴素贝叶斯算法及应用 |
学号 | 3180701131 莫申勇 |
一、实验目的
1.理解朴素贝叶斯算法原理,掌握朴素贝叶斯算法框架;
2.掌握常见的高斯模型,多项式模型和伯努利模型;
3.能根据不同的数据类型,选择不同的概率模型实现朴素贝叶斯算法;
4.针对特定应用场景及数据,能应用朴素贝叶斯解决实际问题。
二、实验内容
1实现高斯朴素贝叶斯算法。
2.熟悉sklearn库中的朴素贝叶斯算法;
3.针对iris数据集,应用sklearn的朴素贝叶斯算法进行类别预测。
4.针对iris数据集,利用自编朴素贝叶斯算法进行类别预测。
三、实验报告要求
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论各种朴素贝叶斯算法的应用场景;
5.讨论朴素贝叶斯算法的优缺点。
四、实验过程及结果
实验代码
高斯模型
多项式模型
伯努利模型
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import math
# data
def create_data():
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df[\'label\'] = iris.target
df.columns = [\'sepal length\', \'sepal width\', \'petal length\', \'petal width\', \'label\']
data = np.array(df.iloc[:100, :])
# print(data)
return data[:,:-1], data[:,-1]
X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
X_test[0], y_test[0]
GaussianNB 高斯朴素贝叶斯
class NaiveBayes:
def __init__(self):
self.model = None
# 数学期望
@staticmethod
def mean(X):
return sum(X) / float(len(X))
# 标准差(方差)
def stdev(self, X):
avg = self.mean(X)
return math.sqrt(sum([pow(x-avg, 2) for x in X]) / float(len(X)))
# 概率密度函数
def gaussian_probability(self, x, mean, stdev):
exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
# 处理X_train
def summarize(self, train_data):
summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
return summaries
# 分类别求出数学期望和标准差
def fit(self, X, y):
labels = list(set(y))
data = {label:[] for label in labels}
for f, label in zip(X, y):
data[label].append(f)
self.model = {label: self.summarize(value) for label, value in data.items()}
return \'gaussianNB train done!\'
# 计算概率
def calculate_probabilities(self, input_data):
# summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
# input_data:[1.1, 2.2]
probabilities = {}
for label, value in self.model.items():
probabilities[label] = 1
for i in range(len(value)):
mean, stdev = value[i]
probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev)
return probabilities
# 类别
def predict(self, X_test):
# {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
label = sorted(self.calculate_probabilities(X_test).items(), key=lambda x: x[-1])[-1][0]
return label
def score(self, X_test, y_test):
right = 0
for X, y in zip(X_test, y_test):
label = self.predict(X)
if label == y:
right += 1
return right / float(len(X_test))
model = NaiveBayes()
model.fit(X_train, y_train)
结果
print(model.predict([4.4, 3.2, 1.3, 0.2]))
结果
model.score(X_test, y_test)
scikit-learn实例,sklearn.naive_bayes
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train, y_train)
结果
clf.score(X_test, y_test)
结果
clf.predict([4.4, 3.2, 1.3, 0.2])
结果
from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型和多项式模型
五、实验小结
朴素贝叶斯的应用场景
需要一个比较容易解释,而且不同维度之间相关性较小的模型的时候。
可以高效处理高维数据,虽然结果可能不尽如人意。
讨论朴素贝叶斯算法的优缺点。
优点:
朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率;
对大数量训练和查询时具有较高的速度。即使使用超大规模的训练集,针对每个项目通常也只会有相对较少的特征数,并且对项目的训练和分类也仅仅是特征概率的数学运算而已;
对小规模的数据表现很好,能个处理多分类任务,适合增量式训练(即可以实时的对新增的样本进行训练);
对缺失数据不太敏感,算法也比较简单,常用于文本分类;
朴素贝叶斯对结果解释容易理解。
缺点:
需要计算先验概率;
分类决策存在错误率;
对输入数据的表达形式很敏感;
由于使用了样本属性独立性的假设,所以如果样本属性有关联时其效果不好。
实验三 | 任务内容 | 计划完成需要的时间(min) | 实际完成需要的时间(min) |
---|---|---|---|
Planning | 计划 | 120 | 8 |
Development | 开发 | 100 | 150 |
Analysis | 需求分析(包括学习新技术) | 10 | 10 |
Design Spec | 生成设计文档 | 30 | 40 |
Design Review | 设计复审 | 5 | 10 |
Coding Standard | 代码规范 | 3 | 2 |
Design | 具体设计 | 10 | 12 |
Coding | 具体编码 | 36 | 21 |
Code Review | 代码复审 | 5 | 7 |
Test | 测试(自我测试,修改代码,提交修改) | 10 | 15 |
Reporting | 报告 | 9 | 6 |
Test Report | 测试报告 | 3 | 2 |
Size Measurement | 计算工作量 | 2 | 1 |
Postmortem & Process Improvement Plan | 事后总结,并提出过程改进计划 | 3 | 3 |
以上是关于实验三 朴素贝叶斯的主要内容,如果未能解决你的问题,请参考以下文章