python实例:导入会员数据后,读取数据文件,检查导入正确性(整列取excel值合并列response取值)

Posted 小贝书屋

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python实例:导入会员数据后,读取数据文件,检查导入正确性(整列取excel值合并列response取值)相关的知识,希望对你有一定的参考价值。

场景描述:某系统新上线,老系统的会员数据要导入新系统中,包含手机号,上级信息和会员余额。有1万多条数据,手工对比过于繁琐,用python自动化处理

思路:系统导入数据后,脚本读取文件,先把会员数据取出来,合并成一个数列,然后传入查询函数,把查询结果和读取的数据进行比对,判断导入情况

 

数据文件内容如下图

 

 

 

系统查询接口信息如下:

 

 

 

第一步,读取数据文件,合并成新的数列。这一部分脚本主要包含取excel中任意一列数据、循环读取列数据传到数列中、合并多个数列生成新数列

def phone():
    wb = xlrd.open_workbook(path+\'\\\\2021.xlsx\')# 打开Excel文件
    data = wb.sheet_by_name(\'sheet1\')#通过excel表格名称(rank)获取工作表
    data_1=data.col_values(0)#获取第一列数据(数组)#查询号码
    data_2=data.col_values(1)#获取第二列数据(数组)#上级
    data_3=data.col_values(2)#获取第三列数据(数组)#余额
    list1=[]
    list2=[]
    list3=[]
    for i in data_1[1:10]:#循环读取列数据传到数列中,[1:10]代表只读取第2行到第10行数据
        list1.append(i)
    for h in data_2[1:10]:
        list2.append(h)
    for j in data_3[1:10]:
        list3.append(j)
    name_tulpe = list(zip(list1,list2,list3))#合并多个数列生成新数列
    return(name_tulpe)
code=phone()

打印输出结果

 

 

第二步,合并后的新数列传到请求函数中,逐一查询匹配结果。这一部分脚本主要用到数列的取值、数据拼接、request返回值json化后提取参数值

def data(params,headers,phone):
    for num in code:
        #分割数据,取出手机、上级、余额(数列的取值)
        手机 = int(num[0])
        上级 = str(num[1])
        余额 = str(num[2])
        print("查询" + \'  \' + str(手机))
        print("导入上级"+\'  \'+上级)
        print("导入余额"+\'  \'+余额)

        #通过手机号查询上级(数据拼接)
        data = \'{"PageIndex":1,"PageSize":10,"KeyWord":\'+ str(手机) +\',"MemberType":"","CardIds":[],"MinLastBuyDate":"","MaxLastBuyDate":"","TagIds":[],"MinPoints":"","MaxPoints":"","MinCreateDate":"","MaxCreateDate":"","SortName":"CreateTime","Sort":"Desc","Source":0,"topAgentId":-1,"CustomProvId":0,"WorkFriendType":0,"ConcernGzhType":0,"p":0.6919700775737443}\'
        response = requests.post(\'https://storeapi.xxx.com/xxx/Member/SearchMemberList\', headers=headers, params=params, data=data)
        response =  response.json()
        Id = response[\'Data\'][\'DataList\'][0][\'Id\']#客户id
        FirstTwitterName = response[\'Data\'][\'DataList\'][0][\'FirstTwitterName\']#上级昵称

        #通过id查询余额(request返回值json化)
        res = requests.get(\'https://storeapi.xxx.com/xxx/Member/FindMemberInfoById?Id=\'+str(Id), headers=headers)
        res = res.json()
        Balance = res[\'Data\'][\'Balance\']#余额(提取参数值)

        #打印上级和余额信息
        print("查询上级"+\'  \'+FirstTwitterName)
        print("查询余额"+\'  \'+str(Balance))

        #判断结果
        if 上级 == FirstTwitterName and str(Balance) == 余额:
            print("匹配成功")
        else:
            print("匹配失败")
        print("---------------")
data(params,headers,phone)

 

 执行后的结果

 

 

有个问题,如果数据太多,第一步合并新数列会花费很多时间,这里还需要寻找更好的方案,或者用jmeter实现

 

全部脚本

# -*-coding:utf8-*-
# encoding:utf-8
import requests
import os
import sys
import xlrd


path = os.path.abspath(os.path.dirname(sys.argv[0]))

headers = {
    \'authority\': \'storeapi.xxxxx.com\',
    \'pragma\': \'no-cache\',
    \'cache-control\': \'no-cache\',
    \'access-control-request-method\': \'POST\',
    \'origin\': \'https://adminstore.xxxx.com\',
    \'user-agent\': \'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (Khtml, like Gecko) Chrome/78.0.3904.108 Safari/537.36\',
    \'access-control-request-headers\': \'authorization,content-type,req-host\',
    \'accept\': \'application/json\',
    \'sec-fetch-site\': \'same-site\',
    \'sec-fetch-mode\': \'cors\',
    \'referer\': \'https://adminstore.xxxx.com/\',
    \'accept-encoding\': \'gzip, deflate, br\',
    \'accept-language\': \'zh-CN,zh;q=0.9\',
    \'req-host\': \'adminstore.smallmitao.com\',
    \'authorization\': \'Bearer xxxx.xxxxx.eKlCnRt8PCC8qdfjS3rOuhAywaulFc3Ad2ujrmNo8uQ\',
    \'content-type\': \'application/json; charset=utf-8\',
}

params = (
    (\'rend\', \'0.4068877130021684\'),
)



#读取表格内的会员数据
def phone():
    wb = xlrd.open_workbook(path+\'\\\\2021.xlsx\')# 打开Excel文件
    data = wb.sheet_by_name(\'sheet1\')#通过excel表格名称(rank)获取工作表
    data_1=data.col_values(0)#获取第一列数据(数组)#查询号码
    data_2=data.col_values(1)#获取第二列数据(数组)#上级
    data_3=data.col_values(2)#获取第三列数据(数组)#余额
    list1=[]
    list2=[]
    list3=[]
    for i in data_1[1:10]:#循环读取列数据传到数列中,[1:10]代表只读取第2行到第10行数据
        list1.append(i)
    for h in data_2[1:10]:
        list2.append(h)
    for j in data_3[1:10]:
        list3.append(j)
    name_tulpe = list(zip(list1,list2,list3))#合并多个数列生成新数列
    return(name_tulpe)
code=phone()

def data(params,headers,phone):
    for num in code:
        #分割数据,取出手机、上级、余额
        手机 = int(num[0])
        上级 = str(num[1])
        余额 = str(num[2])
        print("查询" + \'  \' + str(手机))
        print("导入上级"+\'  \'+上级)
        print("导入余额"+\'  \'+余额)

        #通过手机号查询上级
        data = \'{"PageIndex":1,"PageSize":10,"KeyWord":\'+ str(手机) +\',"MemberType":"","CardIds":[],"MinLastBuyDate":"","MaxLastBuyDate":"","TagIds":[],"MinPoints":"","MaxPoints":"","MinCreateDate":"","MaxCreateDate":"","SortName":"CreateTime","Sort":"Desc","Source":0,"topAgentId":-1,"CustomProvId":0,"WorkFriendType":0,"ConcernGzhType":0,"p":0.6919700775737443}\'
        response = requests.post(\'https://storeapi.xxx.com/xxxx/Member/SearchMemberList\', headers=headers, params=params, data=data)
        response =  response.json()
        Id = response[\'Data\'][\'DataList\'][0][\'Id\']#客户id
        FirstTwitterName = response[\'Data\'][\'DataList\'][0][\'FirstTwitterName\']#上级昵称

        #通过id查询余额
        res = requests.get(\'https://storeapi.xxxx.com/xxxx/Member/FindMemberInfoById?Id=\'+str(Id), headers=headers)
        res = res.json()
        Balance = res[\'Data\'][\'Balance\']#余额

        #打印上级和余额信息
        print("查询上级"+\'  \'+FirstTwitterName)
        print("查询余额"+\'  \'+str(Balance))

        #判断结果
        if 上级 == FirstTwitterName and str(Balance) == 余额:
            print("匹配成功")
        else:
            print("匹配失败")
        print("---------------")
data(params,headers,phone)

    

 

以上是关于python实例:导入会员数据后,读取数据文件,检查导入正确性(整列取excel值合并列response取值)的主要内容,如果未能解决你的问题,请参考以下文章

python如何导入数据

ruby读取csv文件数据

Python使用xlrd模块操作Excel数据导入的方法

vscode怎么导入读取csv文件数据

如何用python把多个csv文件数据处理后汇总到新csv文件

python读取word文档,插入mysql数据库实例