YBTOJLuogu P1527[国家集训队]矩阵乘法
Posted Jayun
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了YBTOJLuogu P1527[国家集训队]矩阵乘法相关的知识,希望对你有一定的参考价值。
链接:
题目大意:
二维区间第 \\(k\\) 小。
正文:
就是区间第 \\(k\\) 小的升维版,详见 区间第 \\(k\\) 小。
代码:
const int N = 510 + 10, M = 6e4 + 10, P = 25e4 + 10;
inline ll Read()
{
ll x = 0, f = 1;
char c = getchar();
while (c != \'-\' && (c < \'0\' || c > \'9\')) c = getchar();
if (c == \'-\') f = -f, c = getchar();
while (c >= \'0\' && c <= \'9\') x = (x << 3) + (x << 1) + c - \'0\', c = getchar();
return x * f;
}
int n, m, tot;
ll t[N][N], ans[M];
void modify(int x, int y, ll val)
{
for (int i = x; i <= n; i += i & -i)
for (int j = y; j <= n; j += j & -j)
t[i][j] += val;
}
int Query(int x, int y)
{
int ans = 0;
for (int i = x; i; i -= i & -i)
for (int j = y; j; j -= j & -j)
ans += t[i][j];
return ans;
}
int query(int Lx, int Ly, int Rx, int Ry)
{
return Query(Rx, Ry) - Query(Lx - 1, Ry) - Query(Rx, Ly - 1) + Query(Lx - 1, Ly - 1);
}
struct node
{
int Lx, Ly, Rx, Ry, k, id;
node(){ }
node(int a, int b, int c, int d, int val, int i)
{
Lx = a, Ly = b, Rx = c, Ry = d, k = val, id = i;
}
}q[P + M], q1[P + M], q2[P + M];
void Solve (int l, int r, int L, int R)
{
if (l > r || L > R) return ;
if(l == r)
{
for (int i = L; i <= R; i++) if(q[i].id) ans[q[i].id] = l;
return ;
}
int mid = l + r >> 1;
int n1 = 0, n2 = 0;
for (int i = L; i <= R; i ++)
if (q[i].id)
{
ll tmp = query(q[i].Lx, q[i].Ly, q[i].Rx, q[i].Ry);
if (q[i].k <= tmp) q1[++n1] = q[i];
else q[i].k -= tmp, q2[++n2] = q[i];
}
else
if (q[i].k <= mid) modify(q[i].Lx, q[i].Ly, 1), q1[++n1] = q[i];
else q2[++n2] = q[i];
for (int i = 1; i <= n1; i++) if(!q1[i].id) modify(q1[i].Lx, q1[i].Ly, -1);
for (int i = 1; i <= n1; i++) q[L + i - 1] = q1[i];
for (int i = 1; i <= n2; i++) q[L + n1 + i - 1] = q2[i];
Solve(l, mid, L, L + n1 - 1), Solve(mid + 1, r, L + n1, R);
}
int main()
{
n = Read(), m = Read();
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
q[++tot] = node(i, j, 0, 0, Read(), 0);
for (int i = 1; i <= m; i++)
q[++tot].Lx = Read(), q[tot].Ly = Read(), q[tot].Rx = Read(), q[tot].Ry = Read(),
q[tot].k = Read(), q[tot].id = i;
Solve(0, 1e9, 1, tot);
for (int i = 1; i <= m; i++) printf ("%lld\\n", ans[i]);
return 0;
}
以上是关于YBTOJLuogu P1527[国家集训队]矩阵乘法的主要内容,如果未能解决你的问题,请参考以下文章