二维树状数组基本操作
Posted Jayun
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二维树状数组基本操作相关的知识,希望对你有一定的参考价值。
单点修改区间查询
根据二维前缀和的思想对普通树状数组优化:
const int N = 4106;
inline ll Read()
{
ll x = 0, f = 1;
char c = getchar();
while (c != \'-\' && (c < \'0\' || c > \'9\')) c = getchar();
if (c == \'-\') f = -f, c = getchar();
while (c >= \'0\' && c <= \'9\') x = (x << 3) + (x << 1) + c - \'0\', c = getchar();
return x * f;
}
int n, m;
ll t[N][N];
void modify(int x, int y, ll val)
{
for (int i = x; i <= n; i += i & -i)
for (int j = y; j <= m; j += j & -j)
t[i][j] += val;
}
ll query(int x, int y)
{
ll ans = 0;
for (int i = x; i; i -= i & -i)
for (int j = y; j; j -= j & -j)
ans += t[i][j];
return ans;
}
int main()
{
n = Read(), m = Read();
for (int op, a, b, c, d; scanf ("%d", &op) != EOF; )
{
if(op == 2) a = Read(), b = Read(), c = Read(), d = Read(),
printf ("%lld\\n", query(c, d) - query(a - 1, d) - query(c, b - 1) + query(a - 1, b - 1));
else a = Read(), b = Read(), c = Read(), modify(a, b, c);
}
return 0;
}
单点修改区间查询
一般区间修改的树状数组维护的都是差分数组,那么二维的也应该维护二维差分数组,接着是求和:
\\[\\begin{aligned}&\\sum_{x=1}^{a}\\sum_{y=1}^{b}\\sum_{i=1}^{x}\\sum_{j=1}^{y}t_{i,j}\\\\
=&\\sum_{i=1}^{a}\\sum_{j=1}^{b}(a-i+1)(b-j+1)t_{i,j}\\\\
=&(a+1)(b+1)\\sum_{i=1}^{a}\\sum_{j=1}^{b}t_{i,j}-\\\\
&(b+1)\\sum_{i=1}^{a}\\sum_{j=1}^{b}t_{i,j}\\cdot i-\\\\
&(a+1)\\sum_{i=1}^{a}\\sum_{j=1}^{b}t_{i,j}\\cdot j+\\\\
&\\sum_{i=1}^{a}\\sum_{j=1}^{b}t_{i,j}\\cdot ij\\end{aligned}\\]
const int N = 4106;
inline ll Read()
{
ll x = 0, f = 1;
char c = getchar();
while (c != \'-\' && (c < \'0\' || c > \'9\')) c = getchar();
if (c == \'-\') f = -f, c = getchar();
while (c >= \'0\' && c <= \'9\') x = (x << 3) + (x << 1) + c - \'0\', c = getchar();
return x * f;
}
int n, m;
ll t[4][N][N];
void modify(int x, int y, ll val)
{
for (int i = x; i <= n; i += i & -i)
for (int j = y; j <= m; j += j & -j)
t[0][i][j] += val,
t[1][i][j] += val * x,
t[2][i][j] += val * y,
t[3][i][j] += val * x * y;
}
ll query(int x, int y)
{
ll ans = 0;
for (int i = x; i; i -= i & -i)
for (int j = y; j; j -= j & -j)
ans += (x + 1) * (y + 1) * t[0][i][j] -
(y + 1) * t[1][i][j] -
(x + 1) * t[2][i][j] +
t[3][i][j];
return ans;
}
int main()
{
n = Read(), m = Read();
for (int op, a, b, c, d, k; scanf ("%d", &op) != EOF; )
{
if(op == 2) a = Read(), b = Read(), c = Read(), d = Read(),
printf ("%lld\\n", query(c, d) - query(a - 1, d) - query(c, b - 1) + query(a - 1, b - 1));
else a = Read(), b = Read(), c = Read(), d = Read(), k = Read(),
modify(a, b, k), modify(a, d + 1, -k), modify(c + 1, b, -k), modify(c + 1, d + 1, k);
}
return 0;
}
以上是关于二维树状数组基本操作的主要内容,如果未能解决你的问题,请参考以下文章