STM32F407的DSP教程第30章 STM32F407复数浮点FFT(支持单精度和双精度)

Posted 安富莱电子

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了STM32F407的DSP教程第30章 STM32F407复数浮点FFT(支持单精度和双精度)相关的知识,希望对你有一定的参考价值。

完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547

第30章       STM32F407复数浮点FFT(支持单精度和双精度)

本章主要讲解复数浮点FTT,支持单精度和双精度。

30.1 初学者重要提示

30.2 复数浮点FFT 说明

30.3 单精度函数arm_cfft_f32的使用(含幅频和相频)

30.4 双精度函数arm_cfft_f64的使用(含幅频和相频)

30.5 实验例程说明(MDK)

30.6 实验例程说明(IAR)

30.7 总结

 

 

30.1 初学者重要提示

  1.   新版DSP库浮点FFT推荐使用混合基函数arm_cfft_f32,而基2函数arm_cfft_radix2_f32和基4函数arm_cfft_radix4_f32将废弃。ARM说明如下:
Earlier releases of the library provided separate radix-2 and radix-4 algorithms that operated on floating-point data.  These functions are still provided but are deprecated.  The older functions are slower and less general than the new functions.
DSP库的早期发行版提供了单独的radix-2和radix-4对浮点数据进行运算的算法。 这些功能仍然提供,但已弃用。 相比新版函数,老版的功能较慢且通用性较低

30.2 复数浮点FFT说明

30.2.1 功能描述

当前复数FFT函数支持三种数据类型,分别是浮点,定点Q31和Q15。这些FFT函数有一个共同的特点,就是用于输入信号的缓冲,在转化结束后用来存储输出结果。这样做的好处是节省了RAM空间,不需要为输入和输出结果分别设置缓存。由于是复数FFT,所以输入和输出缓存要存储实部和虚部。存储顺序如下:{real[0], imag[0], real[1], imag[1],………………} ,在使用中切记不要搞错。

30.2.2 浮点FFT

浮点复数FFT使用了一个混合基数算法,通过多个基8与单个基2或基4算法实现。根据需要,该算法支持的长度[16,32,64,...,4096]和每个长度使用不同的旋转因子表。

浮点复数FFT使用了标准的FFT定义,FFT正变换的输出结果会被放大fftLen倍数,计算FFT逆变换的时候会缩小到1/fftLen。这样就与教科书中的定义一致了。

定义好的旋转因子和位反转表已经在头文件arm_const_structs.h中定义好了,调用浮点FFT函数arm_cfft_f32时,包含相应的头文件即可。比如:

arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)

上式就是计算一个64点的FFT逆变换包括位反转。数据结构arm_cfft_sR_f32_len64可以认为是常数,计算的过程中是不能修改的。同样是这种数据结构还能用于混合基的FFT正变换和逆变换。

早期发布的浮点复数FFT函数版本包含基2和基4两种方法实现的,但是不推荐大家再使用。现在全部用arm_cfft_f32代替了。

30.3 单精度函数arm_cfft_f32的使用(含幅频和相频)

30.3.1 函数说明

函数原型:

void arm_cfft_f32(
  const arm_cfft_instance_f32 * S,
        float32_t * p1,
        uint8_t ifftFlag,
        uint8_t bitReverseFlag)

函数描述:

这个函数用于单精度浮点复数FFT。

函数参数:

1、  第1个参数是封装好的浮点FFT例化,支持的参数如下:

  •   arm_cfft_sR_f32_len16,16点FFT
  •   arm_cfft_sR_f32_len32,32点FFT
  •   arm_cfft_sR_f32_len64,64点FFT
  •   arm_cfft_sR_f32_len128,128点FFT
  •   arm_cfft_sR_f32_len256,256点FFT
  •   arm_cfft_sR_f32_len512,512点FFT
  •   arm_cfft_sR_f32_len1024,1024点FFT
  •   arm_cfft_sR_f32_len2048,2048点FFT
  •   arm_cfft_sR_f32_len4096,4096点FFT

2、  第2个参数是复数地址,存储顺序是实部,虚部,实部,虚部,依次类推。

3、  第3个参数用于设置正变换和逆变换,ifftFlag=0表示正变换,ifftFlag=1表示逆变换。

4、  第4个参数用于设置输出位反转,bitReverseFlag=1表示使能,bitReverseFlag=0表示禁止。

30.3.2 使用举例并和Matlab比较

下面通过在开发板上运行这个函数并计算幅频相应,然后再与Matlab计算的结果做对比。

/*
*********************************************************************************************************
*    函 数 名: arm_cfft_f32_app
*    功能说明: 调用函数arm_cfft_f32计算幅频和相频
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
static void arm_cfft_f32_app(void)
{
    uint16_t i;
    
    ifftFlag = 0; 
    doBitReverse = 1; 
    
    /* 按照实部,虚部,实部,虚部..... 的顺序存储数据 */
    for(i=0; i<TEST_LENGTH_SAMPLES; i++)
    {
        /* 波形是由直流分量,50Hz正弦波组成,波形采样率1024,初始相位60° */
        testInput_f32[i*2] = 1 + cos(2*3.1415926f*50*i/1024 + 3.1415926f/3);
        testInput_f32[i*2+1] = 0;
    }
    
    /* CFFT变换 */ 
    arm_cfft_f32(&arm_cfft_sR_f32_len1024, testInput_f32, ifftFlag, doBitReverse);

    /* 求解模值  */ 
    arm_cmplx_mag_f32(testInput_f32, testOutput_f32, TEST_LENGTH_SAMPLES);
    

    printf("=========================================\\r\\n");    
    
    /* 求相频 */
    PowerPhaseRadians_f32(testInput_f32, Phase_f32, TEST_LENGTH_SAMPLES, 0.5f);
    
    /* 串口打印求解的模值 */
    for(i=0; i<TEST_LENGTH_SAMPLES; i++)
    {
        printf("%f, %f\\r\\n", testOutput_f32[i], Phase_f32[i]);
    }    
}

运行函数arm_cfft_f32_app可以通过串口打印出计算的模值和相角,下面我们就通过Matlab计算的模值和相角跟arm_cfft_f32计算的做对比。

对比前需要先将串口打印出的数据加载到Matlab中,并给这个数组起名sampledata,加载方法在前面的教程的第13章13.6小结已经讲解,这里不做赘述了。Matlab中运行的代码如下::

Fs = 1024;               % 采样率
N  = 1024;               % 采样点数
n  = 0:N-1;              % 采样序列
t  = 0:1/Fs:1-1/Fs;      % 时间序列
f = n * Fs / N;          %真实的频率

%波形是由直流分量,50Hz正弦波正弦波组成
x = 1 + cos(2*pi*50*t + pi/3)   ;  
y = fft(x, N);               %对原始信号做FFT变换
Mag = abs(y);

subplot(2,2,1);
plot(f, Mag); 
title(\'Matlab计算幅频响应\');
xlabel(\'频率\');
ylabel(\'赋值\');

subplot(2,2,2);
realvalue = real(y);
imagvalue = imag(y);
plot(f, atan2(imagvalue, realvalue)*180/pi.*(Mag>=200)); 
title(\'Matlab计算相频响应\');
xlabel(\'频率\');
ylabel(\'相角\');

subplot(2,2,3);
plot(f, sampledata1);  %绘制STM32计算的幅频相应
title(\'STM32计算幅频响应\');
xlabel(\'频率\');
ylabel(\'赋值\');

subplot(2,2,4);
plot(f, sampledata2);   %绘制STM32计算的相频相应
title(\'STM32计算相频响应\');
xlabel(\'频率\');
ylabel(\'相角\');

运行Matlab后的输出结果如下:

 

从上面的对比结果中可以看出,Matlab和函数arm_cfft_f32计算的结果基本是一直的。幅频响应求出的幅值和相频响应中的求出的初始相角都是没问题的。

30.4 双精度函数arm_cfft_f64的使用(含幅频和相频)

30.4.1 函数说明

函数原型:

void arm_cfft_f64(
  const arm_cfft_instance_f64 * S,
        float64_t * p1,
        uint8_t ifftFlag,
        uint8_t bitReverseFlag)

函数描述:

这个函数用于双精度浮点复数FFT。

函数参数:

1、  第1个参数是封装好的浮点FFT例化,支持的参数如下:

  •   arm_cfft_sR_f64_len16,16点FFT
  •   arm_cfft_sR_f64_len32,32点FFT
  •   arm_cfft_sR_f64_len64,64点FFT
  •   arm_cfft_sR_f64_len128,128点FFT
  •   arm_cfft_sR_f64_len256,256点FFT
  •   arm_cfft_sR_f64_len512,512点FFT
  •   arm_cfft_sR_f64_len1024,1024点FFT
  •   arm_cfft_sR_f64_len2048,2048点FFT
  •   arm_cfft_sR_f64_len4096,4096点FFT

2、 第2个参数是复数地址,存储顺序是实部,虚部,实部,虚部,依次类推。

3、  第3个参数用于设置正变换和逆变换,ifftFlag=0表示正变换,ifftFlag=1表示逆变换。

4、  第4个参数用于设置输出位反转,bitReverseFlag=1表示使能,bitReverseFlag=0表示禁止。

30.4.2 使用举例并和Matlab比较

下面通过在开发板上运行这个函数并计算幅频相应,然后再与Matlab计算的结果做对比。

/*
*********************************************************************************************************
*    函 数 名: arm_cfft_f64_app
*    功能说明: 调用函数arm_cfft_f64计算幅频和相频
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
static void arm_cfft_f64_app(void)
{
    uint16_t i;
    float64_t lX,lY;
    
    ifftFlag = 0; 
    doBitReverse = 1; 
    
    /* 按照实部,虚部,实部,虚部..... 的顺序存储数据 */
    for(i=0; i<TEST_LENGTH_SAMPLES; i++)
    {
        /* 波形是由直流分量,50Hz正弦波组成,波形采样率1024,初始相位60° */
        testInput_f64[i*2] = 1 + cos(2*3.1415926*50*i/1024 + 3.1415926/3);
        testInput_f64[i*2+1] = 0;
    }
    
    /* CFFT变换 */ 
    arm_cfft_f64(&arm_cfft_sR_f64_len1024, testInput_f64, ifftFlag, doBitReverse);

    /* 求解模值  */ 
    for (i =0; i < TEST_LENGTH_SAMPLES; i++)
    {
         lX = testInput_f64[2*i];            /* 实部*/
        lY = testInput_f64[2*i+1];          /* 虚部 */  
        testOutput_f64[i] = sqrt(lX*lX+ lY*lY);   /* 求模 */
    }
    
    printf("=========================================\\r\\n");    
    
    /* 求相频 */
    PowerPhaseRadians_f64(testInput_f64, Phase_f64, TEST_LENGTH_SAMPLES, 0.5);
    
    
    /* 串口打印求解的模值 */
    for(i=0; i<TEST_LENGTH_SAMPLES; i++)
    {
        printf("%.11f, %.11f\\r\\n", testOutput_f64[i], Phase_f64[i]);
    }    
    
}

运行函数arm_cfft_f64_app可以通过串口打印出计算的模值和相角,下面我们就通过Matlab计算的模值和相角跟arm_cfft_f64计算的做对比。

对比前需要先将串口打印出的数据加载到Matlab中,并给这个数组起名sampledata,加载方法在前面的教程的第13章13.6小结已经讲解,这里不做赘述了。Matlab中运行的代码如下::

Fs = 1024;               % 采样率
N  = 1024;               % 采样点数
n  = 0:N-1;              % 采样序列
t  = 0:1/Fs:1-1/Fs;      % 时间序列
f = n * Fs / N;          %真实的频率

%波形是由直流分量,50Hz正弦波正弦波组成
x = 1 + cos(2*pi*50*t + pi/3)   ;  
y = fft(x, N);               %对原始信号做FFT变换
Mag = abs(y);

subplot(2,2,1);
plot(f, Mag); 
title(\'Matlab计算幅频响应\');
xlabel(\'频率\');
ylabel(\'赋值\');

subplot(2,2,2);
realvalue = real(y);
imagvalue = imag(y);
plot(f, atan2(imagvalue, realvalue)*180/pi.*(Mag>=200)); 
title(\'Matlab计算相频响应\');
xlabel(\'频率\');
ylabel(\'相角\');

subplot(2,2,3);
plot(f, sampledata1);  %绘制STM32计算的幅频相应
title(\'STM32计算幅频响应\');
xlabel(\'频率\');
ylabel(\'赋值\');

subplot(2,2,4);
plot(f, sampledata2);   %绘制STM32计算的相频相应
title(\'STM32计算相频响应\');
xlabel(\'频率\');
ylabel(\'相角\');

运行Matlab后的输出结果如下:

 

从上面的对比结果中可以看出,Matlab和函数arm_cfft_f64计算的结果基本是一直的。幅频响应求出的幅值和相频响应中的求出的初始相角都是没问题的。

30.5 实验例程说明(MDK)

配套例子:

V5-220_复数浮点FTT(支持单精度和双精度)

实验目的:

  1. 学习复数浮点FFT,支持单精度浮点和双精度浮点

实验内容:

  1. 启动一个自动重装软件定时器,每100ms翻转一次LED2。
  2. 按下按键K1,串口打印1024点复数单精度FFT的幅频响应和相频响应。
  3. 按下按键K2,串口打印1024点复数双精度FFT的幅频响应和相频响应。

使用AC6注意事项

特别注意附件章节C的问题

上电后串口打印的信息:

波特率 115200,数据位 8,奇偶校验位无,停止位 1。

 

RTT方式打印信息:

 

程序设计:

  系统栈大小分配:

 

  硬件外设初始化

硬件外设的初始化是在 bsp.c 文件实现:

/*
*********************************************************************************************************
*    函 数 名: bsp_Init
*    功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{
    /* 
       STM32F407 HAL 库初始化,此时系统用的还是F407自带的16MHz,HSI时钟:
       - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。
       - 设置NVIV优先级分组为4。
     */
    HAL_Init();

    /* 
       配置系统时钟到168MHz
       - 切换使用HSE。
       - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。
    */
    SystemClock_Config();

    /* 
       Event Recorder:
       - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。
       - 默认不开启,如果要使能此选项,务必看V5开发板用户手册第8章
    */    
#if Enable_EventRecorder == 1  
    /* 初始化EventRecorder并开启 */
    EventRecorderInitialize(EventRecordAll, 1U);
    EventRecorderStart();
#endif
    
    bsp_InitKey();        /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */
    bsp_InitTimer();      /* 初始化滴答定时器 */
    bsp_InitUart();    /* 初始化串口 */
    bsp_InitExtIO();   /* 初始化扩展IO */
    bsp_InitLed();        /* 初始化LED */        
}

  主功能:

主程序实现如下操作:

  •   启动一个自动重装软件定时器,每100ms翻转一次LED2。
  •   按下按键K1,串口打印1024点复数单精度FFT的幅频响应和相频响应。
  •   按下按键K2,串口打印1024点复数双精度FFT的幅频响应和相频响应。
/*
*********************************************************************************************************
*    函 数 名: main
*    功能说明: c程序入口
*    形    参: 无
*    返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{
    uint8_t ucKeyCode;        /* 按键代码 */
    

    bsp_Init();        /* 硬件初始化 */
    PrintfLogo();    /* 打印例程信息到串口1 */

    PrintfHelp();    /* 打印操作提示信息 */
    

    bsp_StartAutoTimer(0, 100);    /* 启动1个100ms的自动重装的定时器 */

    /* 进入主程序循环体 */
    while (1)
    {
        bsp_Idle();        /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */
        

        if (bsp_CheckTimer(0))    /* 判断定时器超时时间 */
        {
            /* 每隔100ms 进来一次 */
            bsp_LedToggle(4);    /* 翻转LED2的状态 */   
        }
        
        ucKeyCode = bsp_GetKey();    /* 读取键值, 无键按下时返回 KEY_NONE = 0 */
        if (ucKeyCode != KEY_NONE)
        {
            switch (ucKeyCode)
            {
                case KEY_DOWN_K1:            /* K1键按下 */
                    arm_cfft_f32_app();
                    break;
                
                case KEY_DOWN_K2:            /* K2键按下 */
                    arm_cfft_f64_app();
                    break;
                
                    
                default:
                    /* 其它的键值不处理 */
                    break;
            }
        }

    }
}

30.6 实验例程说明(IAR)

配套例子:

V5-220_复数浮点FTT(支持单精度和双精度)

实验目的:

  1. 学习复数浮点FFT,支持单精度浮点和双精度浮点

实验内容:

  1. 启动一个自动重装软件定时器,每100ms翻转一次LED2。
  2. 按下按键K1,串口打印1024点复数单精度FFT的幅频响应和相频响应。
  3. 按下按键K2,串口打印1024点复数双精度FFT的幅频响应和相频响应。

上电后串口打印的信息:

波特率 115200,数据位 8,奇偶校验位无,停止位 1。

 

RTT方式打印信息:

 

程序设计:

  系统栈大小分配:

 

  硬件外设初始化

硬件外设的初始化是在 bsp.c 文件实现:

/*
*********************************************************************************************************
*    函 数 名: bsp_Init
*    功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次
*    形    参:无
*    返 回 值: 无
*********************************************************************************************************
*/
void bsp_Init(void)
{
    /* 
       STM32F407 HAL 库初始化,此时系统用的还是F407自带的16MHz,HSI时钟:
       - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。
       - 设置NVIV优先级分组为4。
     */
    HAL_Init();

    /* 
       配置系统时钟到168MHz
       - 切换使用HSE。
       - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。
    */
    SystemClock_Config();

    /* 
       Event Recorder:
       - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。
       - 默认不开启,如果要使能此选项,务必看V5开发板用户手册第8章
    */    
#if Enable_EventRecorder == 1  
    /* 初始化EventRecorder并开启 */
    EventRecorderInitialize(EventRecordAll, 1U);
    EventRecorderStart();
#endif
    
    bsp_InitKey();        /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */
    bsp_InitTimer();      /* 初始化滴答定时器 */
    bsp_InitUart();    /* 初始化串口 */
    bsp_InitExtIO();   /* 初始化扩展IO */
    bsp_InitLed();        /* 初始化LED */        
}

  主功能:

主程序实现如下操作:

  •   启动一个自动重装软件定时器,每100ms翻转一次LED2。
  •  按下按键K1,串口打印1024点复数单精度FFT的幅频响应和相频响应。
  •   按下按键K2,串口打印1024点复数双精度FFT的幅频响应和相频响应。
/*
*********************************************************************************************************
*    函 数 名: main
*    功能说明: c程序入口
*    形    参: 无
*    返 回 值: 错误代码(无需处理)
*********************************************************************************************************
*/
int main(void)
{
    uint8_t ucKeyCode;        /* 按键代码 */
    

    bsp_Init();        /* 硬件初始化 */
    PrintfLogo();    /* 打印例程信息到串口1 */

    PrintfHelp();    /* 打印操作提示信息 */
    

    bsp_StartAutoTimer(0, 100);    /* 启动1个100ms的自动重装的定时器 */

    /* 进入主程序循环体 */
    while (1)
    {
        bsp_Idle();        /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */
        

        if (bsp_CheckTimer(0))    /* 判断定时器超时时间 */
        {
            /* 每隔100ms 进来一次 */
            bsp_LedToggle(4);    /* 翻转LED2的状态 */   
        }
        
        ucKeyCode = bsp_GetKey();    /* 读取键值, 无键按下时返回 KEY_NONE = 0 */
        if (ucKeyCode != KEY_NONE)
        {
            switch (ucKeyCode)
            {
                case KEY_DOWN_K1:            /* K1键按下 */
                    arm_cfft_f32_app();
                    break;
                
                case KEY_DOWN_K2:            /* K2键按下 */
                    arm_cfft_f64_app();
                    break;
                
                    
                default:
                    /* 其它的键值不处理 */
                    break;
            }
        }

    }
}

30.7 总结

本章节设计到FFT实现,有兴趣的可以深入了解源码的实现。

 

以上是关于STM32F407的DSP教程第30章 STM32F407复数浮点FFT(支持单精度和双精度)的主要内容,如果未能解决你的问题,请参考以下文章

STM32F407的DSP教程第33章 STM32F407不限制点数FFT实现

STM32F407的DSP教程第29章 STM32F407移植汇编定点FFT库(64点,256点和1024点)

STM32F407的DSP教程第31章 STM32F407实数浮点FFT(支持单精度和双精度)

STM32F407的DSP教程第29章 STM32F407移植汇编定点FFT库(64点,256点和1024点)

STM32F407的DSP教程第50章 STM32F407的样条插补实现,波形拟合丝滑顺畅

STM32F407的DSP教程第49章 STM32F407的自适应滤波器实现,无需Matlab生成系数(支持实时滤波)