在模仿中精进数据分析与可视化01——颗粒物浓度时空变化趋势(Mann–Kendall Test)
Posted 江流石
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在模仿中精进数据分析与可视化01——颗粒物浓度时空变化趋势(Mann–Kendall Test)相关的知识,希望对你有一定的参考价值。
简介
本次要模仿的作品来自论文Investigating the Impacts of Urbanization on PM2.5 Pollution in the Yangtze River Delta of China: A Spatial Panel Data Approach,研究区域为上海、安徽、浙江和江苏,所用数据为 2002–2017该区域PM2.5浓度栅格数据,数据来源于 Dalhousie University Atmospheric Composition Analysis Group开发的年均PM2.5数据集V4.CH.03,空间分辨率为0.01°×0.1°(原论文采用数据的空间分辨率为1km×1km,但我在该网站上找不到,可能是不提供下载了)。
数据下载和处理
数据下载格式为.asc
,使用arcpy
将其转为.tif
格式,所用代码如下。
# -*- coding: utf-8 -*-
import arcpy
import os
inpath = "./ASCII" #待转换的栅格的存储路径,会转换该路径下的所有栅格
outpath = "./TIF" #输出栅格的路径,最好是空路径
filetype = "FLOAT"
print "Starting Convert!"
for filename in os.listdir(inpath):
if filename.endswith(".asc"):
filepath = os.path.join(inpath, filename)
outfilepath = os.path.join(outpath, filename.replace(".asc", ".tif"))
arcpy.ASCIIToRaster_conversion(filepath, outfilepath, filetype)
print "Convert Over!"
Mann–Kendall趋势分析
Mann–Kendall趋势分析的具体计算方法这里不再赘述,原文作者采用R语言的trend package
计算的,本文采用python的pymannkendall
计算,github项目地址为https://github.com/mmhs013/pyMannKendall。
原文的趋势分析包括两部分,一部分是计算slope值,slope值越大,则表明上升的趋势越明显,反之亦然;另一部分是计算p值,p值越小趋势越显著,0.01<p<0.05说明趋势显著,p<0.01说明趋势非常显著。二者分别采用pymannkendall
的sens_slope
和original_test
函数计算,\'pymannkendall\'的简单用法介绍如下。
A quick example of pyMannKendall
usage is given below. Several more examples are provided here.
import numpy as np
import pymannkendall as mk
# Data generation for analysis
data = np.random.rand(360,1)
result = mk.original_test(data)
print(result)
Output are like this:
Mann_Kendall_Test(trend=\'no trend\', h=False, p=0.9507221701045581, z=0.06179991635055463, Tau=0.0021974620860414733, s=142.0, var_s=5205500.0, slope=1.0353584906597959e-05, intercept=0.5232692553379981)
Whereas, the output is a named tuple, so you can call by name for specific result:
print(result.slope)
or, you can directly unpack your results like this:
trend, h, p, z, Tau, s, var_s, slope, intercept = mk.original_test(data)
计算并保存结果
这里依然使用arcpy
作为分析计算的工具,所用代码如下,pymannkendall
较为臃肿,计算速度很慢(我用了十几分钟),并且暂不支持numba
加速,有需要大量计算的可根据其源码从新编写函数,实现numba
加速,如本文的get_slope
函数。
# -*- coding: utf-8 -*-
import arcpy
import os
from glob import glob
import numpy as np
import pymannkendall as mk
inpath = r"./TIF" #.tif文件的保存路径
p_path = r"./pvalues.tif" #p-values的输出路径
slope_path = r"./slopes.tif" #slopes的输出路径
trend_path = r"./trends.tif"
border_path = r"./Shapefiles/border.shp" #研究区域
# 获取2002-2017年的栅格数据的路径
def get_raster_paths(inpath):
paths = []
for year in range(2002, 2018):
year_path = glob(os.path.join(inpath, "*"+str(year)+"*.tif"))
if year_path:
paths.append(year_path[0])
else:
print "can\'t find raster of {} year!".format(year)
return paths
# 裁剪栅格,并将结果转为numpy数组
def clip_raster_to_array(paths, border):
out_image = arcpy.sa.ExtractByMask(paths[0], border)
# 掩膜提取
x_cell_size, y_cell_size = out_image.meanCellWidth, out_image.meanCellHeight #x,y方向的像元大小
ExtentXmin, ExtentYmin = out_image.extent.XMin, out_image.extent.YMin #取x,y坐标最小值
lowerLeft = arcpy.Point(ExtentXmin, ExtentYmin ) #取得数据起始点范围
noDataValue = out_image.noDataValue #取得数据的noData值
out_image = arcpy.RasterToNumPyArray(out_image) #将栅格转为numpy数组
out_image[out_image==noDataValue] = np.NAN #将数组中的noData值设为nan
arrays = np.full(shape=(len(paths), out_image.shape[0], out_image.shape[1]),
fill_value=np.NAN, dtype=out_image.dtype)
arrays[0] = out_image
for i in range(1, len(paths)):
out_image = arcpy.sa.ExtractByMask(paths[i], border)
arcpy.SetRasterProperties_management(out_image, \'#\', \'#\', \'#\', "1 {}".format(noDataValue))
out_image = arcpy.RasterToNumPyArray(out_image)
out_image[out_image==noDataValue] = np.NAN
arrays[i] = out_image
return arrays, (lowerLeft, x_cell_size, y_cell_size, noDataValue)
def array_to_raster(path, data, rasterInfo):
new_raster = arcpy.NumPyArrayToRaster(data, *rasterInfo) #数组转栅格
new_raster.save(path) #保存栅格
# 计算slope值
def get_slope(x):
if np.isnan(x).any():
return np.NAN
idx = 0
n = len(x)
d = np.ones(int(n*(n-1)/2))
for i in range(n-1):
j = np.arange(i+1,n)
d[idx : idx + len(j)] = (x[j] - x[i]) / (j - i)
idx = idx + len(j)
return np.median(d)
# 计算p值
def get_pvalue(x):
if np.isnan(x).any():
return np.NAN
result = mk.original_test(x)
return result.p
paths = get_raster_paths(inpath)
arrays, rasterinfo = clip_raster_to_array(paths, border_path)
print "clip raster to array over!"
slopes = np.apply_along_axis(get_slope, 0, arrays)
print "calculate p-value over!"
pvalues = np.apply_along_axis(get_pvalue, 0, arrays)
print "calculate slope over!"
#计算有显著和比较显著趋势的区域
trends = np.full(shape=slopes.shape, fill_value=np.NaN)
trends[~np.isnan(slopes)] = 0 #不显著的区域设为0
trends[(slopes>0) & ((0.01<pvalues) & (pvalues<0.05))] = 1 #比较显著增加的区域设为1
trends[(slopes>0) & (pvalues<0.01)] = 2 #显著增加的区域设为2
trends[(slopes<0) & ((0.01<pvalues) & (pvalues<0.05))] = 3 #比较显著减少的区域设为3
trends[(slopes<0) & (pvalues<0.01)] = 4 #显著减少的区域设为4
# 保存栅格
array_to_raster(p_path, pvalues, rasterinfo)
array_to_raster(slope_path, slopes, rasterinfo)
array_to_raster(trend_path, trends, rasterinfo)
print "save rasters over!"
结果绘图
以上是关于在模仿中精进数据分析与可视化01——颗粒物浓度时空变化趋势(Mann–Kendall Test)的主要内容,如果未能解决你的问题,请参考以下文章