大数据Hadoop生态圈介绍
Posted hellodev
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据Hadoop生态圈介绍相关的知识,希望对你有一定的参考价值。
大数据Hadoop生态圈-组件介绍
Hadoop是目前应用最为广泛的分布式大数据处理框架,其具备可靠、高效、可伸缩等特点。
Hadoop的核心组件是HDFS、MapReduce。随着处理任务不同,各种组件相继出现,丰富Hadoop生态圈,目前生态圈结构大致如图所示:
根据服务对象和层次分为:数据来源层、数据传输层、数据存储层、资源管理层、数据计算层、任务调度层、业务模型层。接下来对Hadoop生态圈中出现的相关组件做一个简要介绍。
1、HDFS(分布式文件系统)
HDFS是整个hadoop体系的基础,负责数据的存储与管理。HDFS有着高容错性(fault-tolerant)的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。
client:切分文件,访问HDFS时,首先与NameNode交互,获取目标文件的位置信息,然后与DataNode交互,读写数据
NameNode:master节点,每个HDFS集群只有一个,管理HDFS的名称空间和数据块映射信息,配置相关副本信息,处理客户端请求。
DataNode:slave节点,存储实际数据,并汇报状态信息给NameNode,默认一个文件会备份3份在不同的DataNode中,实现高可靠性和容错性。
Secondary NameNode:辅助NameNode,实现高可靠性,定期合并fsimage和fsedits,推送给NameNode;紧急情况下辅助和恢复NameNode,但其并非NameNode的热备份。
Hadoop 2为HDFS引入了两个重要的新功能 ——Federation和高可用(HA):
Federation允许集群中出现多个NameNode,之间相互独立且不需要互相协调,各自分工,管理自己的区域。 DataNode 被用作通用的数据块存储设备。每个 DataNode 要向集群中所有NameNode 注册,并发送心跳报告,执行所有 namenode的命令。
HDFS中的高可用性消除了Hadoop 1中存在的单点故障,其中,NameNode故障将导致集群中断。HDFS的高可用性提供故障转移功能(备用节点从失败的主NameNode接管工作的过程)以实现自动化。
2、MapReduce(分布式计算框架)
MapReduce是一种基于磁盘的分布式并行批处理计算模型,用于处理大数据量的计算。其中Map对应数据集上的独立元素进行指定的操作,生成键-值对形式中间,Reduce则对中间结果中相同的键的所有值进行规约,以得到最终结果。
Jobtracker:master节点,只有一个,管理所有作业,任务/作业的监控,错误处理等,将任务分解成一系列任务,并分派给Tasktracker。
Tacktracker:slave节点,运行 Map task和Reduce task;并与Jobtracker交互,汇报任务状态。
Map task:解析每条数据记录,传递给用户编写的map()函数并执行,将输出结果写入到本地磁盘(如果为map—only作业,则直接写入HDFS)。
Reduce task:从Map 它深刻地执行结果中,远程读取输入数据,对数据进行排序,将数据分组传递给用户编写的Reduce()函数执行。
3、Spark(分布式计算框架)
Spark是一种基于内存的分布式并行计算框架,不同于MapReduce的是——Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。
Cluster Manager:在standalone模式中即为Master主节点,控制整个集群,监控worker。在YARN模式中为资源管理器
Worker节点:从节点,负责控制计算节点,启动Executor或者Driver。
Driver: 运行Application 的main()函数
Executor:执行器,是为某个Application运行在worker node上的一个进程
Spark将数据抽象为RDD(弹性分布式数据集),内部提供了大量的库,包括Spark Core、Spark SQL、Spark Streaming、MLlib、GraphX。 开发者可以在同一个应用程序中无缝组合使用这些库。
Spark Core:包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和Spark Core之上的
Spark SQL:提供通过Apache Hive的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作。
Spark Streaming:对实时数据流进行处理和控制。Spark Streaming允许程序能够像普通RDD一样处理实时数据,通过短时批处理实现的伪流处理。
MLlib:一个常用机器学习算法库,算法被实现为对RDD的Spark操作。这个库包含可扩展的学习算法,比如分类、回归等需要对大量数据集进行迭代的操作。
GraphX:控制图、并行图操作和计算的一组算法和工具的集合。GraphX扩展了RDD API,包含控制图、创建子图、访问路径上所有顶点的操作
4、Flink(分布式计算框架)
Flink是一个基于内存的分布式并行处理框架,类似于Spark,但在部分设计思想有较大出入。对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已。
Flink VS Spark
Spark中,RDD在运行时是表现为Java Object,而Flink主要表现为logical plan。所以在Flink中使用的类Dataframe api是被作为第一优先级来优化的。但是相对来说在spark RDD中就没有了这块的优化了。
Spark中,对于批处理有RDD,对于流式有DStream,不过内部实际还是RDD抽象;在Flink中,对于批处理有DataSet,对于流式我们有DataStreams,但是是同一个公用的引擎之上两个独立的抽象,并且Spark是伪流处理,而Flink是真流处理。
5、Yarn/Mesos(分布式资源管理器)
YARN是下一代MapReduce,即MRv2,是在第一代MapReduce基础上演变而来的,主要是为了解决原始Hadoop扩展性较差,不支持多计算框架而提出的。
Mesos诞生于UC Berkeley的一个研究项目,现已成为Apache项目,当前有一些公司使用Mesos管理集群资源,比如Twitter。与yarn类似,Mesos是一个资源统一管理和调度的平台,同样支持比如MR、steaming等多种运算框架。
6、Zookeeper(分布式协作服务)
解决分布式环境下的数据管理问题:统一命名,状态同步,集群管理,配置同步等。
Hadoop的许多组件依赖于Zookeeper,它运行在计算机集群上面,用于管理Hadoop操作。
7、Sqoop(数据同步工具)
Sqoop是SQL-to-Hadoop的缩写,主要用于传统数据库和Hadoop之前传输数据。数据的导入和导出本质上是Mapreduce程序,充分利用了MR的并行化和容错性。
Sqoop利用数据库技术描述数据架构,用于在关系数据库、数据仓库和Hadoop之间转移数据。
8、Hive/Impala(基于Hadoop的数据仓库)
Hive定义了一种类似SQL的查询语言(HQL),将SQL转化为MapReduce任务在Hadoop上执行。通常用于离线分析。
HQL用于运行存储在Hadoop上的查询语句,Hive让不熟悉MapReduce开发人员也能编写数据查询语句,然后这些语句被翻译为Hadoop上面的MapReduce任务。
Impala是用于处理存储在Hadoop集群中的大量数据的MPP(大规模并行处理)SQL查询引擎。 它是一个用C ++和Java编写的开源软件。 与Apache Hive不同,Impala不基于MapReduce算法。 它实现了一个基于守护进程的分布式架构,它负责在同一台机器上运行的查询执行的所有方面。因此执行效率高于Apache Hive。
9、HBase(分布式列存储数据库)
HBase是一个建立在HDFS之上,面向列的针对结构化数据的可伸缩、高可靠、高性能、分布式和面向列的动态模式数据库。
HBase采用了BigTable的数据模型:增强的稀疏排序映射表(Key/Value),其中,键由行关键字、列关键字和时间戳构成。
HBase提供了对大规模数据的随机、实时读写访问,同时,HBase中保存的数据可以使用MapReduce来处理,它将数据存储和并行计算完美地结合在一起。
10、Flume(日志收集工具)
Flume是一个可扩展、适合复杂环境的海量日志收集系统。它将数据从产生、传输、处理并最终写入目标的路径的过程抽象为数据流,在具体的数据流中,数据源支持在Flume中定制数据发送方,从而支持收集各种不同协议数据。
同时,Flume数据流提供对日志数据进行简单处理的能力,如过滤、格式转换等。此外,Flume还具有能够将日志写往各种数据目标(可定制)的能力。
Flume以Agent为最小的独立运行单位,一个Agent就是一个JVM。单个Agent由Source、Sink和Channel三大组件构成
Source:从客户端收集数据,并传递给Channel。
Channel:缓存区,将Source传输的数据暂时存放。
Sink:从Channel收集数据,并写入到指定地址。
Event:日志文件、avro对象等源文件。
11、Kafka(分布式消息队列)
Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。实现了主题、分区及其队列模式以及生产者、消费者架构模式。
生产者组件和消费者组件均可以连接到KafKa集群,而KafKa被认为是组件通信之间所使用的一种消息中间件。KafKa内部氛围很多Topic(一种高度抽象的数据结构),每个Topic又被分为很多分区(partition),每个分区中的数据按队列模式进行编号存储。被编号的日志数据称为此日志数据块在队列中的偏移量(offest),偏移量越大的数据块越新,即越靠近当前时间。生产环境中的最佳实践架构是Flume+KafKa+Spark Streaming。
12、Oozie(工作流调度器)
Oozie是一个可扩展的工作体系,集成于Hadoop的堆栈,用于协调多个MapReduce作业的执行。它能够管理一个复杂的系统,基于外部事件来执行,外部事件包括数据的定时和数据的出现。
Oozie工作流是放置在控制依赖DAG(有向无环图 Direct Acyclic Graph)中的一组动作(例如,Hadoop的Map/Reduce作业、Pig作业等),其中指定了动作执行的顺序。
Oozie使用hPDL(一种XML流程定义语言)来描述这个图。
————————————————
版权声明:本文为CSDN博主「kiss火葱花」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_25062299/article/details/95592877
以上是关于大数据Hadoop生态圈介绍的主要内容,如果未能解决你的问题,请参考以下文章