ModelArts的雪中送炭,让我拿下CCF BDCI华为Severless工作负载预测亚军

Posted 华为云开发者社区

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ModelArts的雪中送炭,让我拿下CCF BDCI华为Severless工作负载预测亚军相关的知识,希望对你有一定的参考价值。

摘要: 中国计算机学会大数据与计算智能大赛(CCF BDCI)华为Severless工作负载预测亚军方案和ModelArts使用体验分享

本文分享自华为云社区《免费薅ModelArts算力资源-拿下CCF BDCI华为Severless工作负载预测亚军》,原文作者:wyhhyw 。

赛题简介

基于历史数据和历史趋势,对Severless软件架构的工作负载进行精准预测,便于优化资源调整和提升用户服务质量。

数据提供了43个队列数天中的使用情况,其中包涵CPU使用率、磁盘使用率、提交作业数量,作业是否提交成功等信息。要求根据历史信息,预测测试集未来25分钟内,每间隔五分钟的CPU使用率和提交作业数量。赛题链接https://www.datafountain.cn/competitions/468.

赛题分析

这是一道非常典型的时间序列回归问题,目标时对未来五个时间点的CPU使用率和提交作业进行预测。可以从以下几个角度对目标进行建模。

  • 趋势拟合:根据待预测时间点之前的使用率和作业数拟合曲线,并给出预测,参考arima等模型。
  • 单标签回归:以5为时间间隔,对目标进行预测,例如,x1 -> x6, x2 -> x7。具体如下图所示:

https://image.cha138.com/20210601/243d1335a5894c62b415a0646a2914f1.jpg

  • 多标签回归:参考pandas.shift函数,构造历史信息的平滑特征,每次预测一个时间点的目标。示意图如下:
    https://image.cha138.com/20210601/ebf4123c90074f429da145721b05ed66.jpg

方案介绍

笔者有幸获得该比赛的第二名(二等奖),建模方法为融合lightgbm和lstm预测结果,其中lightgbm线上第二,lstm线上第10左右。由于本方案采用的lstm结构比较简单且成绩不是特别理想,而第三名的lstm是决赛答辩队伍中线上成绩最高的神经网络模型,因此本文还介绍了第三名(同二等奖)的lstm架构。

数据分析

在特征工程和建模之前,首先来一波EDA~

下图展示了不同队列下的CPU使用率分布情况,可以发现,不同队列下的数据分布存在较大差别,因此队列号对于预测CPU使用率也是一个非常强力的特征。
https://image.cha138.com/20210601/fe9c4bf844fe485986d100bfc8816569.jpg

下图展示了某队列号下CPU使用率随小时的变化趋势,可以发现下午至凌晨3点使用率均较高,因此小时和分钟也是一个非常强力的特征。需要注意的是,赛题方对时间戳的年月日进行了脱敏,因此仅能使用小时和分钟两个特征。
https://image.cha138.com/20210601/a9b60315b0f94592a306e2eede79e7b3.jpg

特征工程

必不可少的部分,特征为王

  • 滑动特征:对CPU使用率等特征使用pandas.shift函数构建其平滑特征。
  • 差分特征:在平滑特征的基础上构造各阶差分特征。
  • 基于滑窗的统计特征:在平滑特征的基础上开一个窗口,然后滑动,每次取窗口内特征的均值、方差、最大值等统计特征。
  • 聚合统计特征:例如历史数据中不同小时下CPU使用率的均值和方差等特征。
  • 伪穿越特征:穿越特征一般是不被允许的。那么对于时序问题,可以构建伪穿越特征,其实也就是聚合统计特征。例如,待预测的时间点是上午9点,可以根据历史数据构造上午10点的均值等统计特征,并且衍生出差值比值等特征。
    https://image.cha138.com/20210601/3400876c3f8d4889bd7a57aea054e350.jpg

模型

  • 建模策略:见赛题分析中的多标签回归。一般来说,这种建模方式都会取得较好的效果。
  • lightgbm:对每一个标签都进行五折交叉验证,CPU使用率和提交作业数各五个时间点,则一共进行了十次五折交叉验证。
  • lstm:CPU使用率是0-100的整数,连续五个时间点的数据如"10-21-41-31-34"可以看做是nlp中的字符索引,因此可以直接用于索引embedding lookup table中的字向量,那么建模就很自然的过度到了lstm。

下图展示了本文所用的lstm架构,效果并不是十分理想,线上大约在第十左右。在赛后和队友分析讨论之后,认为我们的框架存在几个问题。首先是将每个CPU使用率当做字向量,那么lstm中的input_dim为1,效果肯定不好。其次是我们的框架很简单,并没有引入卷积或者注意力机制等。
https://image.cha138.com/20210601/e981fb5728994086b574fb7fccb1eb0e.jpg

下面给出二等奖中另一支队伍的lstm框架,该框架包括两部分:
(1)LSTM提取CPU使用率、硬盘使用率的时序信息,引入注意力机制
(2)全连接提取其他手工特征的信息,进行高阶交叉,并且设置跨层连接,构成“不同尺度的集成模型”。

https://image.cha138.com/20210601/35c466044ccf4a848060a0f978284bf3.jpg

训练

  • 损失:由于数据波动较大,因此可以认为存在一定的离群点,所以采用smooth l1作为损失函数。
  • 算力:lightgbm建模对算力的要求较小,16G内存足以。但使用上述神经网络训练时,由于是多标签回归(10个标签),对每个标签都需要训练一个模型,如果再结合五折交叉验证,那么将训练50个模型,这对算力就有一定的需求。

笔者在赛程接近尾声时才开始训练nn模型,然而本人只有一张玩具显卡gtx1650,对于该多标签任务训练数十个模型实在太过耗费时间,迫不得已去寻找算力资源。经过师兄的推荐,最后选定了华为云的ModelArts,每天两小时的免费算力,而且是V100,感觉很不错。最后让实验室兄弟多开几个号,一边训练一边保存模型,时间快到了就换号继续训练,两三天就把模型跑好了。虽然因为时限需要切换账号,但总体的使用体验还是不错的,下面就给大家简单介绍一下ModelArts的使用体验。

ModelArts使用体验

使用感受

(1)虽然是在云端训练,但是ModelArts提供了jupyter lab/notebook,就像平时在本地PC上上传数据到notebook中然后写代码一样,完全感知不到训练流程的变化。lab中集成了不同的引擎,常规的如pytorch, tf, xgboost这些都有。

https://image.cha138.com/20210601/627a271d20df436dabb124adcedf3f5c.jpg

https://image.cha138.com/20210601/8fabf188fd264616b1be702f070edebb.jpg

(2)安装依赖包很方便,直接在cell中’!pip install xxx’就可以,原生的notebook中好像没有这个功能。比如我新建的notebook是pytorch引擎,但又需要xgboost,那么就可直接安装,见下图。

https://image.cha138.com/20210601/c7783632ebb8455b9af51b580adb63dc.jpg

(3)目前上传数据有限制,一次只能上传大约是几百MB,可以先将数据上传至notebook中后再进行特征工程,对于比较大的数据,可以本地切分以后分批上传,所以这也是一个无关紧要的问题,毕竟免费V100太香了。

还有一些其他的细节,各位小伙伴们可以自行探索呀!

划重点-如何申请

还愣着干什么,猛点链接,抢算力呀!!! https://bbs.huaweicloud.com/forum/thread-51080-1-1.html

 

点击关注,第一时间了解华为云新鲜技术~

以上是关于ModelArts的雪中送炭,让我拿下CCF BDCI华为Severless工作负载预测亚军的主要内容,如果未能解决你的问题,请参考以下文章

ModelArts的雪中送炭,让我拿下CCF BDCI华为Severless工作负载预测亚军

拿下机器学习公有云服务中国市场份额第一的AI开发平台,到底做对了什么?

秋招被虐,最终拿下腾讯和字节offer!

第五周总结

站在巅峰的阿里面试参考指南!居然能让我成功拿下 12 家大厂 offer?

三个步骤,一天就搞定了MySQL,让我顺利拿下了天猫offer