快速排序
Posted Lucky~龍
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了快速排序相关的知识,希望对你有一定的参考价值。
快速排序是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一
部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序
过程可以递归进行,以此达到整个数据变成有序序列。
需求
排序前:{6, 1, 2, 7, 9, 3, 4, 5, 8}
排序后:{1, 2, 3, 4, 5, 6, 7, 8, 9}
排序原理
1.首先设定一个分界值,通过该分界值将数组分成左右两部分;
2.将大于或等于分界值的数据放到到数组右边,小于分界值的数据放到数组的左边。此时左边部分中各元素都小于
或等于分界值,而右边部分中各元素都大于或等于分界值;
3.然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两
部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。
4.重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当
左侧和右侧两个部分的数据排完序后,整个数组的排序也就完成了。
快速排序API设计
快速排序代码实现
import java.util.Arrays;
/**
* @author: ChengLong
* @datetime: 2021/5/25 9:40
*/
public class Demo06Quick {
public static void main(String[] args) {
Integer[] arr = {6, 1, 2, 7, 9, 3, 4, 5, 8};
sort(arr);
System.out.println(Arrays.toString(arr));
}
// 判断v是否小于w
private static boolean less(Comparable v,Comparable w){
return v.compareTo(w) < 0;
}
// 交换a数组中,索引i和索引j处的值
private static void exch(Comparable[] a,int i,int j){
Comparable temp;
temp = a[i];
a[i] = a[j];
a[j] = temp;
}
// 对数组内的元素进行排序
public static void sort(Comparable[] a){
int lo = 0;
int hi = a.length-1;
sort(a,lo,hi);
}
// 对数组a中从索引lo到索引hi之间的元素进行排序
private static void sort(Comparable[] a, int lo, int hi){
//安全性校验
if (hi<=lo){
return;
}
//需要对数组中lo索引到hi索引处的元素进行分组(左子组和右子组);
int partition = partition(a, lo, hi);// 返回的是分组的分界值所在的索引,分界值位置变换后的索引
// 让左子组有序
sort(a,lo,partition-1);
// 让右子组有序
sort(a,partition+1,hi);
}
// 对数组a中,从索引 lo到索引 hi之间的元素进行分组,并返回分组界限对应的索引
public static int partition(Comparable[] a,int lo,int hi){
// 确定分界值
Comparable key = a[lo];
// 定义两个指针,分别指向待切分元素的最小索引处和最大索引处的下一个位置
int left = lo;
int right = hi+1;
// 切分
while (true){
// 先从右往左扫描,移动right指针,找到一个比分界值小的元素,停止
while (less(key,a[--right])){
if (right==lo){
break;
}
}
// 再从左往右扫描,移动left指针,找到一个比分界值大的元素,停止
while (less(a[++left],key)){
if (left==hi){
break;
}
}
// 判断left>=right,如果是,则证明元素扫描完毕,结束循环,如果不是,则交换元素即可
if (left>=right){
break;
}else {
exch(a,left,right);
}
}
exch(a,lo,right);
return right;
}
}
快速排序和归并排序的区别
快速排序是另外一种分治的排序算法,它将一个数组分成两个子数组,将两部分独立的排序。快速排序和归并排序
是互补的:归并排序将数组分成两个子数组分别排序,并将有序的子数组归并从而将整个数组排序,而快速排序的
方式则是当两个数组都有序时,整个数组自然就有序了。在归并排序中,一个数组被等分为两半,归并调用发生在
处理整个数组之前,在快速排序中,切分数组的位置取决于数组的内容,递归调用发生在处理整个数组之后。
快速排序时间复杂度分析
快速排序的一次切分从两头开始交替搜索,直到left和right重合,因此,一次切分算法的时间复杂度为O(n),但整个
快速排序的时间复杂度和切分的次数相关。
最优情况:每一次切分选择的基准数字刚好将当前序列等分。
如果我们把数组的切分看做是一个树,那么上图就是它的最优情况的图示,共切分了logn次,所以,最优情况下快
速排序的时间复杂度为O(nlogn);
最坏情况:每一次切分选择的基准数字是当前序列中最大数或者最小数,这使得每次切分都会有一个子组,那么总
共就得切分n次,所以,最坏情况下,快速排序的时间复杂度为O(n^2);
平均情况:每一次切分选择的基准数字不是最大值和最小值,也不是中值,这种情况我们也可以用数学归纳法证
明,快速排序的时间复杂度为O(nlogn),由于数学归纳法有很多数学相关的知识,容易使我们混乱,所以这里就不对
平均情况的时间复杂度做证明了。
以上是关于快速排序的主要内容,如果未能解决你的问题,请参考以下文章