稀疏矩阵
Posted FZZ98
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了稀疏矩阵相关的知识,希望对你有一定的参考价值。
public class ArraysDemo {
public static void main(String[] args) {
// 初始化矩阵
int [][] a1 = new int[11][11];
a1[2][1]=1;
a1[6][6]=2;
a1[10][10]=3;
System.out.println("original matrix:");
printArray(a1);
// 统计稀疏矩阵大小
int num = 0;
for (int i = 0; i < a1.length; i++) {
for (int j = 0; j < a1[i].length; j++) {
if (a1[i][j]!=0) num++;
}
}
// 压缩
int[][] a2 = compressArray(a1, num);
System.out.println("compress matrix:");
printArray(a2);
// 还原
int[][] a3 = recoveryArray(a2);
System.out.println("recovery matrix:");
printArray(a3);
}
/**
* recoveryArray
* @param ints
* @return
*/
private static int[][] recoveryArray(int[][] ints) {
int[][] a3 = new int[11][11];
for (int i = 1; i < ints.length; i++) {
for (int j = 0; j < ints[i].length; j++) {
a3[ints[i][0]][ints[i][1]]=ints[i][2];
}
}
return a3;
}
/**
* compressArray
* @param a1
* @param num
* @return
*/
private static int[][] compressArray(int[][] a1,int num) {
// 创建一个稀疏矩阵
int[][] a2 = new int[num+1][3];
a2[0][0] = 11;
a2[0][1] = 11;
a2[0][2] = num;
// 计数
int count = 0;
for (int i = 0; i < a1.length; i++) {
for (int j = 0; j < a1[i].length; j++) {
if (a1[i][j]!=0){
count++;
a2[count][0]=i;
a2[count][1]=j;
a2[count][2]=a1[i][j];
}
}
}
return a2;
}
/**
* printArray
* @param a1
*/
public static void printArray(int[][] a1){
for (int[] ints : a1) {
for (int anInt : ints) {
System.out.print(anInt+"\\t");
}
System.out.println();
}
}
}
运行效果
original matrix:
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 3
compress matrix:
11 11 3
2 1 1
6 6 2
10 10 3
recovery matrix:
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 3
以上是关于稀疏矩阵的主要内容,如果未能解决你的问题,请参考以下文章