动态规划
Posted QianXin的无名小站
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了动态规划相关的知识,希望对你有一定的参考价值。
动态规划是一种优化方法:
Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion(标准), from some set of available alternatives.[1] Optimization problems of sorts arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.[2]
In the simplest case, an optimization problem consists of maximizing or minimizing a real function by systematically choosing input values from within an allowed set
(集合) and computing the value of the function. The generalization of optimization theory and techniques to other formulations constitutes a large area of applied mathematics. More generally, optimization includes finding "best available" values of some objective function given a defined domain (or input), including a variety of different types of objective functions and different types of domains.
Dynamic programming is both a mathematical optimization method and a computer programming method. The method was developed by Richard Bellman in the 1950s and has found applications in numerous fields, from aerospace engineering to economics.
In both contexts it refers to simplifying a complicated problem by breaking it down into simpler sub-problems in a recursive manner. While some decision problems cannot be taken apart this way, decisions that span several points in time do often break apart recursively. Likewise, in computer science, if a problem can be solved optimally by breaking it into sub-problems and then recursively finding the optimal solutions to the sub-problems, then it is said to have optimal substructure.
If sub-problems can be nested recursively inside larger problems, so that dynamic programming methods are applicable, then there is a relation between the value of the larger problem and the values of the sub-problems.[1] In the optimization literature this relationship is called the Bellman equation.
以上是关于动态规划的主要内容,如果未能解决你的问题,请参考以下文章
算法动态规划 ② ( 动态规划四要素 | 动态规划状态 State | 动态规划初始化 Initialize | 动态规划方程 Function | 动态规划答案 Answer )
算法动态规划 ② ( 动态规划四要素 | 动态规划状态 State | 动态规划初始化 Initialize | 动态规划方程 Function | 动态规划答案 Answer )
算法动态规划 ① ( 动态规划简介 | 自底向上的动态规划示例 | 自顶向下的动态规划示例 )
算法动态规划 ① ( 动态规划简介 | 自底向上的动态规划示例 | 自顶向下的动态规划示例 )
算法动态规划 ③ ( LeetCode 62.不同路径 | 问题分析 | 自顶向下的动态规划 | 自底向上的动态规划 )
算法动态规划 ③ ( LeetCode 62.不同路径 | 问题分析 | 自顶向下的动态规划 | 自底向上的动态规划 )