ubuntu18配置深度学习环境
Posted dangxusheng
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ubuntu18配置深度学习环境相关的知识,希望对你有一定的参考价值。
1 安装nvidia驱动
1.1 设置root
sudo passwd 123
1.2 检测nvidia显卡
ubuntu-drivers devices
(base) dxs@dxs-ubuntu:~$ ubuntu-drivers devices == /sys/devices/pci0000:00/0000:00:01.0/0000:01:00.0 == modalias : pci:v000010DEd00002184sv00001458sd00003FC7bc03sc00i00 vendor : NVIDIA Corporation driver : nvidia-driver-430 - distro non-free recommended driver : xserver-xorg-video-nouveau - distro free builtin (base) dxs@dxs-ubuntu:~$
1.3 安装nvidia驱动
sudo apt install nvidia-driver-430
1.4 安装完成后 reboot
--------------------------------------------------------
2 安装anaconda3
2.1 下载Anaconda3-5.2.0-Linux-x86_64.sh
2.2 安装:sudo sh Anaconda3-5.2.0-Linux-x86_64.sh
2.3 设置conda镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ conda config --set show_channel_urls yes
-----------------------------------------------------------------------------
3 安装cuda cudnn
conda install cudatoolkit=10.0 conda install cudnn=7.6.0
------------------------------------------------------------------------------
4 安装tensorflow-gpu
conda install tensorflow-gpu=1.13.1
5 安装pytorch
在线安装: conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
离线安装: 先去 https://download.pytorch.org/whl/cu100/torch_stable.html 下载 torch-1.2.0-cp36-cp36m-manylinux1_x86_64.whl 和 torchvision-0.4.0-cp36-cp36m-manylinux1_x86_64.whl , 然后安装
6 安装caffe
conda install -c defaults caffe-gpu
以上是关于ubuntu18配置深度学习环境的主要内容,如果未能解决你的问题,请参考以下文章
Ubuntu18.04 + CUDA9.0 + cuDNN7.3 + Tensorflow-gpu-1.12 + Jupyter Notebook深度学习环境配置
ubuntu18.04配置deepo深度学习环境(cuda + cudnn + nvidia-docker + deepo)--超级细致,并把遇到的错误和所有解决方案都列出来了
深度学习GPU环境Ubuntu16.04+GTX1080+CUDA9+cuDNN7+TensorFlow1.6环境配置