一 QuerySet对象
1.1可切片
使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。
Entry.objects.all()[:5] # (LIMIT 5) Entry.objects.all()[5:10] # (OFFSET 5 LIMIT 5)
不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。
1.2可迭代
articleList=models.Article.objects.all() for article in articleList: print(article.title)
1.3惰性查询
查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。
queryResult=models.Article.objects.all() # not hits database print(queryResult) # hits database for article in queryResult: print(article.title) # hits database
一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值
1.4缓存机制
每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。
在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。
请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:
print([a.title for a in models.Article.objects.all()]) print([a.create_time for a in models.Article.objects.all()])
这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它:
queryResult=models.Article.objects.all() print([a.title for a in queryResult]) print([a.create_time for a in queryResult])
何时查询集不会被缓存?
查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。
例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:
queryset = Entry.objects.all() print queryset[5] # Queries the database print queryset[5] # Queries the database again
然而,如果已经对全部查询集求值过,则将检查缓存:
queryset = Entry.objects.all() [entry for entry in queryset] # Queries the database print queryset[5] # Uses cache print queryset[5] # Uses cache
下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:
[entry for entry in queryset] bool(queryset) entry in queryset list(queryset)
注:简单地打印查询集不会填充缓存。
queryResult=models.Article.objects.all() print(queryResult) # hits database print(queryResult) # hits database
1.5 exists()与iterator()方法
exists:
简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:
if queryResult.exists(): #SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=() print("exists...")
iterator:
当queryset非常巨大时,cache会成为问题。
处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。
objs = Book.objects.all().iterator() # iterator()可以一次只从数据库获取少量数据,这样可以节省内存 for obj in objs: print(obj.title) #BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了 for obj in objs: print(obj.title)
当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。
总结:
queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。
二 中介模型
处理类似搭配 pizza 和 topping 这样简单的多对多关系时,使用标准的ManyToManyField 就可以了。但是,有时你可能需要关联数据到两个模型之间的关系上。
例如,有这样一个应用,它记录音乐家所属的音乐小组。我们可以用一个ManyToManyField 表示小组和成员之间的多对多关系。但是,有时你可能想知道更多成员关系的细节,比如成员是何时加入小组的。
对于这些情况,Django 允许你指定一个中介模型来定义多对多关系。 你可以将其他字段放在中介模型里面。源模型的ManyToManyField 字段将使用through 参数指向中介模型。对于上面的音乐小组的例子,代码如下:
from django.db import models class Person(models.Model): name = models.CharField(max_length=128) def __str__(self): # __unicode__ on Python 2 return self.name class Group(models.Model): name = models.CharField(max_length=128) members = models.ManyToManyField(Person, through=\'Membership\') def __str__(self): # __unicode__ on Python 2 return self.name class Membership(models.Model): person = models.ForeignKey(Person) group = models.ForeignKey(Group) date_joined = models.DateField() invite_reason = models.CharField(max_length=64)
既然你已经设置好ManyToManyField 来使用中介模型(在这个例子中就是Membership),接下来你要开始创建多对多关系。你要做的就是创建中介模型的实例:
>>> ringo = Person.objects.create(name="Ringo Starr") >>> paul = Person.objects.create(name="Paul McCartney") >>> beatles = Group.objects.create(name="The Beatles") >>> m1 = Membership(person=ringo, group=beatles, ... date_joined=date(1962, 8, 16), ... invite_reason="Needed a new drummer.") >>> m1.save() >>> beatles.members.all() [<Person: Ringo Starr>] >>> ringo.group_set.all() [<Group: The Beatles>] >>> m2 = Membership.objects.create(person=paul, group=beatles, ... date_joined=date(1960, 8, 1), ... invite_reason="Wanted to form a band.") >>> beatles.members.all() [<Person: Ringo Starr>, <Person: Paul McCartney>]
与普通的多对多字段不同,你不能使用add、 create和赋值语句(比如,beatles.members = [...])来创建关系:
# THIS WILL NOT WORK >>> beatles.members.add(john) # NEITHER WILL THIS >>> beatles.members.create(name="George Harrison") # AND NEITHER WILL THIS >>> beatles.members = [john, paul, ringo, george]
为什么不能这样做? 这是因为你不能只创建 Person和 Group之间的关联关系,你还要指定 Membership模型中所需要的所有信息;而简单的add、create 和赋值语句是做不到这一点的。所以它们不能在使用中介模型的多对多关系中使用。此时,唯一的办法就是创建中介模型的实例。
remove()方法被禁用也是出于同样的原因。但是clear() 方法却是可用的。它可以清空某个实例所有的多对多关系:
>>> # Beatles have broken up >>> beatles.members.clear() >>> # Note that this deletes the intermediate model instances >>> Membership.objects.all() []
三 查询优化
3.1表数据
class UserInfo(AbstractUser): """ 用户信息 """ nid = models.BigAutoField(primary_key=True) nickname = models.CharField(verbose_name=\'昵称\', max_length=32) telephone = models.CharField(max_length=11, blank=True, null=True, unique=True, verbose_name=\'手机号码\') avatar = models.FileField(verbose_name=\'头像\',upload_to = \'avatar/\',default="/avatar/default.png") create_time = models.DateTimeField(verbose_name=\'创建时间\', auto_now_add=True) fans = models.ManyToManyField(verbose_name=\'粉丝们\', to=\'UserInfo\', through=\'UserFans\', related_name=\'f\', through_fields=(\'user\', \'follower\')) def __str__(self): return self.username class UserFans(models.Model): """ 互粉关系表 """ nid = models.AutoField(primary_key=True) user = models.ForeignKey(verbose_name=\'博主\', to=\'UserInfo\', to_field=\'nid\', related_name=\'users\') follower = models.ForeignKey(verbose_name=\'粉丝\', to=\'UserInfo\', to_field=\'nid\', related_name=\'followers\') class Blog(models.Model): """ 博客信息 """ nid = models.BigAutoField(primary_key=True) title = models.CharField(verbose_name=\'个人博客标题\', max_length=64) site = models.CharField(verbose_name=\'个人博客后缀\', max_length=32, unique=True) theme = models.CharField(verbose_name=\'博客主题\', max_length=32) user = models.OneToOneField(to=\'UserInfo\', to_field=\'nid\') def __str__(self): return self.title class Category(models.Model): """ 博主个人文章分类表 """ nid = models.AutoField(primary_key=True) title = models.CharField(verbose_name=\'分类标题\', max_length=32) blog = models.ForeignKey(verbose_name=\'所属博客\', to=\'Blog\', to_field=\'nid\') class Article(models.Model): nid = models.BigAutoField(primary_key=True) title = models.CharField(max_length=50, verbose_name=\'文章标题\') desc = models.CharField(max_length=255, verbose_name=\'文章描述\') read_count = models.IntegerField(default=0) comment_count= models.IntegerField(default=0) up_count = models.IntegerField(default=0) down_count = models.IntegerField(default=0) category = models.ForeignKey(verbose_name=\'文章类型\', to=\'Category\', to_field=\'nid\', null=True) create_time = models.DateField(verbose_name=\'创建时间\') blog = models.ForeignKey(verbose_name=\'所属博客\', to=\'Blog\', to_field=\'nid\') tags = models.ManyToManyField( to="Tag", through=\'Article2Tag\', through_fields=(\'article\', \'tag\'), ) class ArticleDetail(models.Model): """ 文章详细表 """ nid = models.AutoField(primary_key=True) content = models.TextField(verbose_name=\'文章内容\', ) article = models.OneToOneField(verbose_name=\'所属文章\', to=\'Article\', to_field=\'nid\') class Comment(models.Model): """ 评论表 """ nid = models.BigAutoField(primary_key=True) article = models.ForeignKey(verbose_name=\'评论文章\', to=\'Article\', to_field=\'nid\') content = models.CharField(verbose_name=\'评论内容\', max_length=255) create_time = models.DateTimeField(verbose_name=\'创建时间\', auto_now_add=True) parent_comment = models.ForeignKey(\'self\', blank=True, null=True, verbose_name=\'父级评论\') user = models.ForeignKey(verbose_name=\'评论者\', to=\'UserInfo\', to_field=\'nid\') up_count = models.IntegerField(default=0) def __str__(self): return self.content class ArticleUpDown(models.Model): """ 点赞表 """ nid = models.AutoField(primary_key=True) user = models.ForeignKey(\'UserInfo\', null=True) article = models.ForeignKey("Article", null=True) models.BooleanField(verbose_name=\'是否赞\') class CommentUp(models.Model): """ 点赞表 """ nid = models.AutoField(primary_key=True) user = models.ForeignKey(\'UserInfo\', null=True) comment = models.ForeignKey("Comment", null=True) class Tag(models.Model): nid = models.AutoField(primary_key=True) title = models.CharField(verbose_name=\'标签名称\', max_length=32) blog = models.ForeignKey(verbose_name=\'所属博客\', to=\'Blog\', to_field=\'nid\') class Article2Tag(models.Model): nid = models.AutoField(primary_key=True) article = models.ForeignKey(verbose_name=\'文章\', to="Article", to_field=\'nid\') tag = models.ForeignKey(verbose_name=\'标签\', to="Tag", to_field=\'nid\')
3.2 select_related
3.2.1简单使用
对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化。
select_related 返回一个QuerySet,当执行它的查询时它沿着外键关系查询关联的对象的数据。它会生成一个复杂的查询并引起性能的损耗,但是在以后使用外键关系时将不需要数据库查询。
简单说,在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。
下面的例子解释了普通查询和select_related() 查询的区别。
查询id=2的文章的分类名称,下面是一个标准的查询:
# Hits the database. article=models.Article.objects.get(nid=2) # Hits the database again to get the related Blog object. print(article.category.title)
\'\'\' SELECT "blog_article"."nid", "blog_article"."title", "blog_article"."desc", "blog_article"."read_count", "blog_article"."comment_count", "blog_article"."up_count", "blog_article"."down_count", "blog_article"."category_id", "blog_article"."create_time", "blog_article"."blog_id", "blog_article"."article_type_id" FROM "blog_article" WHERE "blog_article"."nid" = 2; args=(2,) SELECT "blog_category"."nid", "blog_category"."title", "blog_category"."blog_id" FROM "blog_category" WHERE "blog_category"."nid" = 4; args=(4,) \'\'\'
如果我们使用select_related()函数:
articleList=models.Article.objects.select_related("category").all() for article_obj in articleList: # Doesn\'t hit the database, because article_obj.category # has been prepopulated in the previous query. #不再查询数据库,因为第一次查询,数据已经填充进去了 print(article_obj.category.title)
SELECT "blog_article"."nid", "blog_article"."title", "blog_article"."desc", "blog_article"."read_count", "blog_article"."comment_count", "blog_article"."up_count", "blog_article"."down_count", "blog_article"."category_id", "blog_article"."create_time", "blog_article"."blog_id", "blog_article"."article_type_id", "blog_category"."nid", "blog_category"."title", "blog_category"."blog_id" FROM "blog_article" LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid");
3.2.2 多外键查询
这是针对category的外键查询,如果是另外一个外键呢?让我们一起看下:
article=models.Article.objects.select_related("category").get(nid=1) print(article.articledetail)
观察logging结果,发现依然需要查询两次,所以需要改为:
article=models.Article.objects.select_related("category","articledetail").get(nid=1) print(article.articledetail)
或者:1.7以后支持链式操作
article=models.Article.objects .select_related("category") .select_related("articledetail") .get(nid=1) # django 1.7 支持链式操作 print(article.articledetail)
SELECT "blog_article"."nid", "blog_article"."title", ...... "blog_category"."nid", "blog_category"."title", "blog_category"."blog_id", "blog_articledetail"."nid", "blog_articledetail"."content", "blog_articledetail"."article_id" FROM "blog_article" LEFT OUTER JOIN "blog_category" ON ("blog_article"."category_id" = "blog_category"."nid") LEFT OUTER JOIN "blog_articledetail" ON ("blog_article"."nid" = "blog_articledetail"."article_id") WHERE "blog_article"."nid" = 1; args=(1,)
3.2.3 深层查询
# 查询id=1的文章的用户姓名 article=models.Article.objects.select_related("blog").get(nid=1) print(article.blog.user.username)
依然需要查询两次:
以上是关于Linux之文档与目录结构的主要内容,如果未能解决你的问题,请参考以下文章