In a given 2D binary array `A`, there are two islands. (An island is a 4-directionally connected group of `1`s not connected to any other 1s.)
Now, we may change 0
s to 1
s so as to connect the two islands together to form 1 island.
Return the smallest number of 0
s that must be flipped. (It is guaranteed that the answer is at least 1.)
Example 1:
Input: [[0,1],[1,0]]
Output: 1
Example 2:
Input: [[0,1,0],[0,0,0],[0,0,1]]
Output: 2
Example 3:
Input: [[1,1,1,1,1],[1,0,0,0,1],[1,0,1,0,1],[1,0,0,0,1],[1,1,1,1,1]]
Output: 1
Note:
1 <= A.length = A[0].length <= 100
A[i][j] == 0
orA[i][j] == 1
这道题说是有一个只有0和1的二维数组,其中连在一起的1表示岛屿,现在假定给定的数组中一定有两个岛屿,问最少需要把多少个0变成1才能使得两个岛屿相连。在 LeetCode 中关于岛屿的题目还不少,但是万变不离其宗,核心都是用 DFS 或者 BFS 来解,有些还可以用联合查找 Union Find 来做。这里要求的是最小值,首先预定了一个 BFS,这就相当于洪水扩散一样,一圈一圈的,用的就是 BFS 的层序遍历。好,现在确定了这点后,再来想,这里并不是从某个点开始扩散,而是要从一个岛屿开始扩散,那么这个岛屿的所有的点都是 BFS 的起点,都是要放入到 queue 中的,所以要先来找出一个岛屿的所有点。找的方法就是遍历数组,找到第一个1的位置,然后对其调用 DFS 或者 BFS 来找出所有相连的1,先来用 DFS 的方法,对第一个为1的点调用递归函数,将所有相连的1都放入到一个队列 queue 中,并且将该点的值改为2,然后使用 BFS 进行层序遍历,每遍历一层,结果 res 都增加1,当遇到1时,直接返回 res 即可,参见代码如下:
解法一:
class Solution {
public:
int shortestBridge(vector<vector<int>>& A) {
int res = 0, n = A.size(), startX = -1, startY = -1;
queue<int> q;
vector<int> dirX{-1, 0, 1, 0}, dirY = {0, 1, 0, -1};
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (A[i][j] == 0) continue;
startX = i; startY = j;
break;
}
if (startX != -1) break;
}
helper(A, startX, startY, q);
while (!q.empty()) {
for (int i = q.size(); i > 0; --i) {
int t = q.front(); q.pop();
for (int k = 0; k < 4; ++k) {
int x = t / n + dirX[k], y = t % n + dirY[k];
if (x < 0 || x >= n || y < 0 || y >= n || A[x][y] == 2) continue;
if (A[x][y] == 1) return res;
A[x][y] = 2;
q.push(x * n + y);
}
}
++res;
}
return res;
}
void helper(vector<vector<int>>& A, int x, int y, queue<int>& q) {
int n = A.size();
if (x < 0 || x >= n || y < 0 || y >= n || A[x][y] == 0 || A[x][y] == 2) return;
A[x][y] = 2;
q.push(x * n + y);
helper(A, x + 1, y, q);
helper(A, x, y + 1, q);
helper(A, x - 1, y, q);
helper(A, x, y - 1, q);
}
};
我们也可以使用 BFS 来找出所有相邻的1,再加上后面的层序遍历的 BFS,总共需要两个 BFS,注意这里第一个 BFS 不需要是层序遍历的,而第二个 BFS 是必须层序遍历,可以对比一下看一下这两种写法有何不同,参见代码如下:
解法二:
class Solution {
public:
int shortestBridge(vector<vector<int>>& A) {
int res = 0, n = A.size();
queue<int> q, que;
vector<int> dirX{-1, 0, 1, 0}, dirY = {0, 1, 0, -1};
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (A[i][j] == 0) continue;
A[i][j] = 2;
que.push(i * n + j);
break;
}
if (!que.empty()) break;
}
while (!que.empty()) {
int t = que.front(); que.pop();
q.push(t);
for (int k = 0; k < 4; ++k) {
int x = t / n + dirX[k], y = t % n + dirY[k];
if (x < 0 || x >= n || y < 0 || y >= n || A[x][y] == 0 || A[x][y] == 2) continue;
A[x][y] = 2;
que.push(x * n + y);
}
}
while (!q.empty()) {
for (int i = q.size(); i > 0; --i) {
int t = q.front(); q.pop();
for (int k = 0; k < 4; ++k) {
int x = t / n + dirX[k], y = t % n + dirY[k];
if (x < 0 || x >= n || y < 0 || y >= n || A[x][y] == 2) continue;
if (A[x][y] == 1) return res;
A[x][y] = 2;
q.push(x * n + y);
}
}
++res;
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/934
类似题目:
参考资料:
https://leetcode.com/problems/shortest-bridge/
[LeetCode All in One 题目讲解汇总(持续更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)