大数据~说说Hadoop

Posted 敢于对过去告一个段落,才有信心掀开新的篇章!

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据~说说Hadoop相关的知识,希望对你有一定的参考价值。

Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
 Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。
Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算

优点

Hadoop是一个能够对大量数据进行分布式处理的软件框架。 Hadoop 以一种可靠、高效、可伸缩的方式进行数据处理。
Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。
Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。
Hadoop 还是可伸缩的,能够处理 PB 级数据。
此外,Hadoop 依赖于社区服务,因此它的成本比较低,任何人都可以使用。
Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:
  1. 高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。
  2. 高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
  3. 高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
  4. 高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
  5. 低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。
Hadoop带有用Java语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。
hadoop大数据处理的意义
Hadoop得以在大数据处理应用中广泛应用得益于其自身在数据提取、变 形和加载(ETL)方面上的天然优势。Hadoop的分布式架构,将大数据处理引擎尽可能的靠近存储,对例如像ETL这样的批处理操作相对合适,因为类似 这样操作的批处理结果可以直接走向存储。Hadoop的MapReduce功能实现了将单个任务打碎,并将碎片任务(Map)发送到多个节点上,之后再以 单个数据集的形式加载(Reduce)到数据仓库里。

子项目

Hadoop Common: 在0.20及以前的版本中,包含HDFS、MapReduce和其他项目公共内容,从0.21开始HDFS和MapReduce被分离为独立的子项目,其余内容为Hadoop Common
HDFS: Hadoop分布式文件系统(Distributed File System) - HDFS (Hadoop Distributed File System)
MapReduce:并行计算框架,0.20前使用 org.apache.hadoop.mapred 旧接口,0.20版本开始引入org.apache.hadoop.mapreduce的新API
HBase: 类似Google BigTable的分布式NoSQL列数据库。(HBase和Avro已经于2010年5月成为顶级 Apache 项目)
Hive:数据仓库工具,由Facebook贡献。
Zookeeper:分布式锁设施,提供类似Google Chubby的功能,由Facebook贡献。
Avro:新的数据序列化格式与传输工具,将逐步取代Hadoop原有的IPC机制。
Pig: 大数据分析平台,为用户提供多种接口。
Ambari:Hadoop管理工具,可以快捷的监控、部署、管理集群。
Sqoop:于在HADOOP与传统的数据库间进行数据的传递。

大叔总结

通过上面相关阅读,让我们领略到hadoop是一个庞大的工具集,里面有分布式文件存储,并行云计算,分布式事务锁,大数据分析等一系列工具,确实够你喝一壶的!
当然,如果你觉得它好,还是越早迈出第一步越好!
 

以上是关于大数据~说说Hadoop的主要内容,如果未能解决你的问题,请参考以下文章

从放弃到入门27之大数据Cloudera Impala

如何创建一个大数据平台

大数据存储- Hbase 基础

大数据技术平台都有哪些?

大数据核心技术都有哪些

有java基础,如何学习大数据,该怎么开始?