Smooth Code
Posted 松子茶
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Smooth Code相关的知识,希望对你有一定的参考价值。
/*M///
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/*
* This file includes the code, contributed by Simon Perreault
* (the function icvMedianBlur_8u_O1)
*
* Constant-time median filtering -- http://nomis80.org/ctmf.html
* Copyright (C) 2006 Simon Perreault
*
* Contact:
* Laboratoire de vision et systemes numeriques
* Pavillon Adrien-Pouliot
* Universite Laval
* Sainte-Foy, Quebec, Canada
* G1K 7P4
*
* perreaul@gel.ulaval.ca
*/
namespace cv
/****************************************************************************************\\
Box Filter
\\****************************************************************************************/
template<typename T, typename ST> struct RowSum : public BaseRowFilter
RowSum( int _ksize, int _anchor )
ksize = _ksize;
anchor = _anchor;
void operator()(const uchar* src, uchar* dst, int width, int cn)
const T* S = (const T*)src;
ST* D = (ST*)dst;
int i = 0, k, ksz_cn = ksize*cn;
width = (width - 1)*cn;
for( k = 0; k < cn; k++, S++, D++ )
ST s = 0;
for( i = 0; i < ksz_cn; i += cn )
s += S[i];
D[0] = s;
for( i = 0; i < width; i += cn )
s += S[i + ksz_cn] - S[i];
D[i+cn] = s;
;
template<typename ST, typename T> struct ColumnSum : public BaseColumnFilter
ColumnSum( int _ksize, int _anchor, double _scale )
ksize = _ksize;
anchor = _anchor;
scale = _scale;
sumCount = 0;
void reset() sumCount = 0;
void operator()(const uchar** src, uchar* dst, int dststep, int count, int width)
int i;
ST* SUM;
bool haveScale = scale != 1;
double _scale = scale;
if( width != (int)sum.size() )
sum.resize(width);
sumCount = 0;
SUM = &sum[0];
if( sumCount == 0 )
for( i = 0; i < width; i++ )
SUM[i] = 0;
for( ; sumCount < ksize - 1; sumCount++, src++ )
const ST* Sp = (const ST*)src[0];
for( i = 0; i <= width - 2; i += 2 )
ST s0 = SUM[i] + Sp[i], s1 = SUM[i+1] + Sp[i+1];
SUM[i] = s0; SUM[i+1] = s1;
for( ; i < width; i++ )
SUM[i] += Sp[i];
else
CV_Assert( sumCount == ksize-1 );
src += ksize-1;
for( ; count--; src++ )
const ST* Sp = (const ST*)src[0];
const ST* Sm = (const ST*)src[1-ksize];
T* D = (T*)dst;
if( haveScale )
for( i = 0; i <= width - 2; i += 2 )
ST s0 = SUM[i] + Sp[i], s1 = SUM[i+1] + Sp[i+1];
D[i] = saturate_cast<T>(s0*_scale);
D[i+1] = saturate_cast<T>(s1*_scale);
s0 -= Sm[i]; s1 -= Sm[i+1];
SUM[i] = s0; SUM[i+1] = s1;
for( ; i < width; i++ )
ST s0 = SUM[i] + Sp[i];
D[i] = saturate_cast<T>(s0*_scale);
SUM[i] = s0 - Sm[i];
else
for( i = 0; i <= width - 2; i += 2 )
ST s0 = SUM[i] + Sp[i], s1 = SUM[i+1] + Sp[i+1];
D[i] = saturate_cast<T>(s0);
D[i+1] = saturate_cast<T>(s1);
s0 -= Sm[i]; s1 -= Sm[i+1];
SUM[i] = s0; SUM[i+1] = s1;
for( ; i < width; i++ )
ST s0 = SUM[i] + Sp[i];
D[i] = saturate_cast<T>(s0);
SUM[i] = s0 - Sm[i];
dst += dststep;
double scale;
int sumCount;
vector<ST> sum;
;
Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType, int ksize, int anchor)
int sdepth = CV_MAT_DEPTH(srcType), ddepth = CV_MAT_DEPTH(sumType);
CV_Assert( CV_MAT_CN(sumType) == CV_MAT_CN(srcType) );
if( anchor < 0 )
anchor = ksize/2;
if( sdepth == CV_8U && ddepth == CV_32S )
return Ptr<BaseRowFilter>(new RowSum<uchar, int>(ksize, anchor));
if( sdepth == CV_8U && ddepth == CV_64F )
return Ptr<BaseRowFilter>(new RowSum<uchar, double>(ksize, anchor));
if( sdepth == CV_16U && ddepth == CV_32S )
return Ptr<BaseRowFilter>(new RowSum<ushort, int>(ksize, anchor));
if( sdepth == CV_16U && ddepth == CV_64F )
return Ptr<BaseRowFilter>(new RowSum<ushort, double>(ksize, anchor));
if( sdepth == CV_16S && ddepth == CV_32S )
return Ptr<BaseRowFilter>(new RowSum<short, int>(ksize, anchor));
if( sdepth == CV_32S && ddepth == CV_32S )
return Ptr<BaseRowFilter>(new RowSum<int, int>(ksize, anchor));
if( sdepth == CV_16S && ddepth == CV_64F )
return Ptr<BaseRowFilter>(new RowSum<short, double>(ksize, anchor));
if( sdepth == CV_32F && ddepth == CV_64F )
return Ptr<BaseRowFilter>(new RowSum<float, double>(ksize, anchor));
if( sdepth == CV_64F && ddepth == CV_64F )
return Ptr<BaseRowFilter>(new RowSum<double, double>(ksize, anchor));
CV_Error_( CV_StsNotImplemented,
("Unsupported combination of source format (=%d), and buffer format (=%d)",
srcType, sumType));
return Ptr<BaseRowFilter>(0);
Ptr<BaseColumnFilter> getColumnSumFilter(int sumType, int dstType, int ksize,
int anchor, double scale)
int sdepth = CV_MAT_DEPTH(sumType), ddepth = CV_MAT_DEPTH(dstType);
CV_Assert( CV_MAT_CN(sumType) == CV_MAT_CN(dstType) );
if( anchor < 0 )
anchor = ksize/2;
if( ddepth == CV_8U && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(new ColumnSum<int, uchar>(ksize, anchor, scale));
if( ddepth == CV_8U && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(new ColumnSum<double, uchar>(ksize, anchor, scale));
if( ddepth == CV_16U && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(new ColumnSum<int, ushort>(ksize, anchor, scale));
if( ddepth == CV_16U && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(new ColumnSum<double, ushort>(ksize, anchor, scale));
if( ddepth == CV_16S && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(new ColumnSum<int, short>(ksize, anchor, scale));
if( ddepth == CV_16S && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(new ColumnSum<double, short>(ksize, anchor, scale));
if( ddepth == CV_32S && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(new ColumnSum<int, int>(ksize, anchor, scale));
if( ddepth == CV_32F && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(new ColumnSum<int, float>(ksize, anchor, scale));
if( ddepth == CV_32F && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(new ColumnSum<double, float>(ksize, anchor, scale));
if( ddepth == CV_64F && sdepth == CV_32S )
return Ptr<BaseColumnFilter>(new ColumnSum<int, double>(ksize, anchor, scale));
if( ddepth == CV_64F && sdepth == CV_64F )
return Ptr<BaseColumnFilter>(new ColumnSum<double, double>(ksize, anchor, scale));
CV_Error_( CV_StsNotImplemented,
("Unsupported combination of sum format (=%d), and destination format (=%d)",
sumType, dstType));
return Ptr<BaseColumnFilter>(0);
Ptr<FilterEngine> createBoxFilter( int srcType, int dstType, Size ksize,
Point anchor, bool normalize, int borderType )
int sdepth = CV_MAT_DEPTH(srcType);
int cn = CV_MAT_CN(srcType), sumType = CV_64F;
if( sdepth < CV_32S && (!normalize ||
ksize.width*ksize.height <= (sdepth == CV_8U ? (1<<23) :
sdepth == CV_16U ? (1 << 15) : (1 << 16))) )
sumType = CV_32S;
sumType = CV_MAKETYPE( sumType, cn );
Ptr<BaseRowFilter> rowFilter = getRowSumFilter(srcType, sumType, ksize.width, anchor.x );
Ptr<BaseColumnFilter> columnFilter = getColumnSumFilter(sumType,
dstType, ksize.height, anchor.y, normalize ? 1./(ksize.width*ksize.height) : 1);
return Ptr<FilterEngine>(new FilterEngine(Ptr<BaseFilter>(0), rowFilter, columnFilter,
srcType, dstType, sumType, borderType ));
void boxFilter( const Mat& src, Mat& dst, int ddepth,
Size ksize, Point anchor,
bool normalize, int borderType )
int sdepth = src.depth(), cn = src.channels();
if( ddepth < 0 )
ddepth = sdepth;
dst.create( src.size(), CV_MAKETYPE(ddepth, cn) );
if( borderType != BORDER_CONSTANT && normalize )
if( src.rows == 1 )
ksize.height = 1;
if( src.cols == 1 )
ksize.width = 1;
Ptr<FilterEngine> f = createBoxFilter( src.type(), dst.type(),
ksize, anchor, normalize, borderType );
f->apply( src, dst );
void blur( const Mat& src, CV_OUT Mat& dst,
Size ksize, Point anchor, int borderType )
boxFilter( src, dst, -1, ksize, anchor, true, borderType );
/****************************************************************************************\\
Gaussian Blur
\\****************************************************************************************/
Mat getGaussianKernel( int n, double sigma, int ktype )
const int SMALL_GAUSSIAN_SIZE = 7;
static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] =
1.f,
0.25f, 0.5f, 0.25f,
0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f,
0.03125f, 0.109375f, 0.21875f, 0.28125f, 0.21875f, 0.109375f, 0.03125f
;
const float* fixed_kernel = n % 2 == 1 && n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 ?
small_gaussian_tab[n>>1] : 0;
CV_Assert( ktype == CV_32F || ktype == CV_64F );
Mat kernel(n, 1, ktype);
float* cf = (float*)kernel.data;
double* cd = (double*)kernel.data;
double sigmaX = sigma > 0 ? sigma : ((n-1)*0.5 - 1)*0.3 + 0.8;
double scale2X = -0.5/(sigmaX*sigmaX);
double sum = 0;
int i;
for( i = 0; i < n; i++ )
double x = i - (n-1)*0.5;
double t = fixed_kernel ? (double)fixed_kernel[i] : std::exp(scale2X*x*x);
if( ktype == CV_32F )
cf[i] = (float)t;
sum += cf[i];
else
cd[i] = t;
sum += cd[i];
sum = 1./sum;
for( i = 0; i < n; i++ )
if( ktype == CV_32F )
cf[i] = (float)(cf[i]*sum);
else
cd[i] *= sum;
return kernel;
Ptr<FilterEngine> createGaussianFilter( int type, Size ksize,
double sigma1, double sigma2,
int borderType )
int depth = CV_MAT_DEPTH(type);
if( sigma2 <= 0 )
sigma2 = sigma1;
// automatic detection of kernel size from sigma
if( ksize.width <= 0 && sigma1 > 0 )
ksize.width = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1;
if( ksize.height <= 0 && sigma2 > 0 )
ksize.height = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1;
CV_Assert( ksize.width > 0 && ksize.width % 2 == 1 &&
ksize.height > 0 && ksize.height % 2 == 1 );
sigma1 = std::max( sigma1, 0. );
sigma2 = std::max( sigma2, 0. );
Mat kx = getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F) );
Mat ky;
if( ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON )
ky = kx;
else
ky = getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F) );
return createSeparableLinearFilter( type, type, kx, ky, Point(-1,-1), 0, borderType );
void GaussianBlur( const Mat& src, Mat& dst, Size ksize,
double sigma1, double sigma2,
int borderType )
if( ksize.width == 1 && ksize.height == 1 )
src.copyTo(dst);
return;
dst.create( src.size(), src.type() );
if( borderType != BORDER_CONSTANT )
if( src.rows == 1 )
ksize.height = 1;
if( src.cols == 1 )
ksize.width = 1;
Ptr<FilterEngine> f = createGaussianFilter( src.type(), ksize, sigma1, sigma2, borderType );
f->apply( src, dst );
/****************************************************************************************\\
Median Filter
\\****************************************************************************************/
#if _MSC_VER >= 1200
#pragma warning( disable: 4244 )
#endif
typedef ushort HT;
/**
* This structure represents a two-tier histogram. The first tier (known as the
* "coarse" level) is 4 bit wide and the second tier (known as the "fine" level)
* is 8 bit wide. Pixels inserted in the fine level also get inserted into the
* coarse bucket designated by the 4 MSBs of the fine bucket value.
*
* The structure is aligned on 16 bits, which is a prerequisite for SIMD
* instructions. Each bucket is 16 bit wide, which means that extra care must be
* taken to prevent overflow.
*/
typedef struct
HT coarse[16];
HT fine[16][16];
Histogram;
#if CV_SSE2
#define MEDIAN_HAVE_SIMD 1
static inline void histogram_add_simd( const HT x[16], HT y[16] )
const __m128i* rx = (const __m128i*)x;
__m128i* ry = (__m128i*)y;
__m128i r0 = _mm_add_epi16(_mm_load_si128(ry+0),_mm_load_si128(rx+0));
__m128i r1 = _mm_add_epi16(_mm_load_si128(ry+1),_mm_load_si128(rx+1));
_mm_store_si128(ry+0, r0);
_mm_store_si128(ry+1, r1);
static inline void histogram_sub_simd( const HT x[16], HT y[16] )
const __m128i* rx = (const __m128i*)x;
__m128i* ry = (__m128i*)y;
__m128i r0 = _mm_sub_epi16(_mm_load_si128(ry+0),_mm_load_si128(rx+0));
__m128i r1 = _mm_sub_epi16(_mm_load_si128(ry+1),_mm_load_si128(rx+1));
_mm_store_si128(ry+0, r0);
_mm_store_si128(ry+1, r1);
#else
#define MEDIAN_HAVE_SIMD 0
#endif
static inline void histogram_add( const HT x[16], HT y[16] )
int i;
for( i = 0; i < 16; ++i )
y[i] = (HT)(y[i] + x[i]);
static inline void histogram_sub( const HT x[16], HT y[16] )
int i;
for( i = 0; i < 16; ++i )
y[i] = (HT)(y[i] - x[i]);
static inline void histogram_muladd( int a, const HT x[16],
HT y[16] )
for( int i = 0; i < 16; ++i )
y[i] = (HT)(y[i] + a * x[i]);
static void
medianBlur_8u_O1( const Mat& _src, Mat& _dst, int ksize )
/**
* HOP is short for Histogram OPeration. This macro makes an operation \\a op on
* histogram \\a h for pixel value \\a x. It takes care of handling both levels.
*/
#define HOP(h,x,op) \\
h.coarse[x>>4] op, \\
*((HT*)h.fine + x) op
#define COP(c,j,x,op) \\
h_coarse[ 16*(n*c+j) + (x>>4) ] op, \\
h_fine[ 16 * (n*(16*c+(x>>4)) + j) + (x & 0xF) ] op
int cn = _dst.channels(), m = _dst.rows, r = (ksize-1)/2;
size_t sstep = _src.step, dstep = _dst.step;
Histogram CV_DECL_ALIGNED(16) H[4];
HT CV_DECL_ALIGNED(16) luc[4][16];
int STRIPE_SIZE = std::min( _dst.cols, 512/cn );
vector<HT> _h_coarse(1 * 16 * (STRIPE_SIZE + 2*r) * cn + 16);
vector<HT> _h_fine(16 * 16 * (STRIPE_SIZE + 2*r) * cn + 16);
HT* h_coarse = alignPtr(&_h_coarse[0], 16);
HT* h_fine = alignPtr(&_h_fine[0], 16);
#if MEDIAN_HAVE_SIMD
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif
for( int x = 0; x < _dst.cols; x += STRIPE_SIZE )
int i, j, k, c, n = std::min(_dst.cols - x, STRIPE_SIZE) + r*2;
const uchar* src = _src.data + x*cn;
uchar* dst = _dst.data + (x - r)*cn;
memset( h_coarse, 0, 16*n*cn*sizeof(h_coarse[0]) );
memset( h_fine, 0, 16*16*n*cn*sizeof(h_fine[0]) );
// First row initialization
for( c = 0; c < cn; c++ )
for( j = 0; j < n; j++ )
COP( c, j, src[cn*j+c], += r+2 );
for( i = 1; i < r; i++ )
const uchar* p = src + sstep*std::min(i, m-1);
for ( j = 0; j < n; j++ )
COP( c, j, p[cn*j+c], ++ );
for( i = 0; i < m; i++ )
const uchar* p0 = src + sstep * std::max( 0, i-r-1 );
const uchar* p1 = src + sstep * std::min( m-1, i+r );
memset( H, 0, cn*sizeof(H[0]) );
memset( luc, 0, cn*sizeof(luc[0]) );
for( c = 0; c < cn; c++ )
// Update column histograms for the entire row.
for( j = 0; j < n; j++ )
COP( c, j, p0[j*cn + c], -- );
COP( c, j, p1[j*cn + c], ++ );
// First column initialization
for( k = 0; k < 16; ++k )
histogram_muladd( 2*r+1, &h_fine[16*n*(16*c+k)], &H[c].fine[k][0] );
#if MEDIAN_HAVE_SIMD
if( useSIMD )
for( j = 0; j < 2*r; ++j )
histogram_add_simd( &h_coarse[16*(n*c+j)], H[c].coarse );
for( j = r; j < n-r; j++ )
int t = 2*r*r + 2*r, b, sum = 0;
HT* segment;
histogram_add_simd( &h_coarse[16*(n*c + std::min(j+r,n-1))], H[c].coarse );
// Find median at coarse level
for ( k = 0; k < 16 ; ++k )
sum += H[c].coarse[k];
if ( sum > t )
sum -= H[c].coarse[k];
break;
assert( k < 16 );
/* Update corresponding histogram segment */
if ( luc[c][k] <= j-r )
memset( &H[c].fine[k], 0, 16 * sizeof(HT) );
for ( luc[c][k] = j-r; luc[c][k] < MIN(j+r+1,n); ++luc[c][k] )
histogram_add_simd( &h_fine[16*(n*(16*c+k)+luc[c][k])], H[c].fine[k] );
if ( luc[c][k] < j+r+1 )
histogram_muladd( j+r+1 - n, &h_fine[16*(n*(16*c+k)+(n-1))], &H[c].fine[k][0] );
luc[c][k] = (HT)(j+r+1);
else
for ( ; luc[c][k] < j+r+1; ++luc[c][k] )
histogram_sub_simd( &h_fine[16*(n*(16*c+k)+MAX(luc[c][k]-2*r-1,0))], H[c].fine[k] );
histogram_add_simd( &h_fine[16*(n*(16*c+k)+MIN(luc[c][k],n-1))], H[c].fine[k] );
histogram_sub_simd( &h_coarse[16*(n*c+MAX(j-r,0))], H[c].coarse );
/* Find median in segment */
segment = H[c].fine[k];
for ( b = 0; b < 16 ; b++ )
sum += segment[b];
if ( sum > t )
dst[dstep*i+cn*j+c] = (uchar)(16*k + b);
break;
assert( b < 16 );
else
#endif
for( j = 0; j < 2*r; ++j )
histogram_add( &h_coarse[16*(n*c+j)], H[c].coarse );
for( j = r; j < n-r; j++ )
int t = 2*r*r + 2*r, b, sum = 0;
HT* segment;
histogram_add( &h_coarse[16*(n*c + std::min(j+r,n-1))], H[c].coarse );
// Find median at coarse level
for ( k = 0; k < 16 ; ++k )
sum += H[c].coarse[k];
if ( sum > t )
sum -= H[c].coarse[k];
break;
assert( k < 16 );
/* Update corresponding histogram segment */
if ( luc[c][k] <= j-r )
memset( &H[c].fine[k], 0, 16 * sizeof(HT) );
for ( luc[c][k] = j-r; luc[c][k] < MIN(j+r+1,n); ++luc[c][k] )
histogram_add( &h_fine[16*(n*(16*c+k)+luc[c][k])], H[c].fine[k] );
if ( luc[c][k] < j+r+1 )
histogram_muladd( j+r+1 - n, &h_fine[16*(n*(16*c+k)+(n-1))], &H[c].fine[k][0] );
luc[c][k] = (HT)(j+r+1);
else
for ( ; luc[c][k] < j+r+1; ++luc[c][k] )
histogram_sub( &h_fine[16*(n*(16*c+k)+MAX(luc[c][k]-2*r-1,0))], H[c].fine[k] );
histogram_add( &h_fine[16*(n*(16*c+k)+MIN(luc[c][k],n-1))], H[c].fine[k] );
histogram_sub( &h_coarse[16*(n*c+MAX(j-r,0))], H[c].coarse );
/* Find median in segment */
segment = H[c].fine[k];
for ( b = 0; b < 16 ; b++ )
sum += segment[b];
if ( sum > t )
dst[dstep*i+cn*j+c] = (uchar)(16*k + b);
break;
assert( b < 16 );
#undef HOP
#undef COP
#if _MSC_VER >= 1200
#pragma warning( default: 4244 )
#endif
static void
medianBlur_8u_Om( const Mat& _src, Mat& _dst, int m )
#define N 16
int zone0[4][N];
int zone1[4][N*N];
int x, y;
int n2 = m*m/2;
Size size = _dst.size();
const uchar* src = _src.data;
uchar* dst = _dst.data;
int src_step = (int)_src.step, dst_step = (int)_dst.step;
int cn = _src.channels();
const uchar* src_max = src + size.height*src_step;
#define UPDATE_ACC01( pix, cn, op ) \\
\\
int p = (pix); \\
zone1[cn][p] op; \\
zone0[cn][p >> 4] op; \\
//CV_Assert( size.height >= nx && size.width >= nx );
for( x = 0; x < size.width; x++, src += cn, dst += cn )
uchar* dst_cur = dst;
const uchar* src_top = src;
const uchar* src_bottom = src;
int k, c;
int src_step1 = src_step, dst_step1 = dst_step;
if( x % 2 != 0 )
src_bottom = src_top += src_step*(size.height-1);
dst_cur += dst_step*(size.height-1);
src_step1 = -src_step1;
dst_step1 = -dst_step1;
// init accumulator
memset( zone0, 0, sizeof(zone0[0])*cn );
memset( zone1, 0, sizeof(zone1[0])*cn );
for( y = 0; y <= m/2; y++ )
for( c = 0; c < cn; c++ )
if( y > 0 )
for( k = 0; k < m*cn; k += cn )
UPDATE_ACC01( src_bottom[k+c], c, ++ );
else
for( k = 0; k < m*cn; k += cn )
UPDATE_ACC01( src_bottom[k+c], c, += m/2+1 );
if( (src_step1 > 0 && y < size.height-1) ||
(src_step1 < 0 && size.height-y-1 > 0) )
src_bottom += src_step1;
for( y = 0; y < size.height; y++, dst_cur += dst_step1 )
// find median
for( c = 0; c < cn; c++ )
int s = 0;
for( k = 0; ; k++ )
int t = s + zone0[c][k];
if( t > n2 ) break;
s = t;
for( k *= N; ;k++ )
s += zone1[c][k];
if( s > n2 ) break;
dst_cur[c] = (uchar)k;
if( y+1 == size.height )
break;
if( cn == 1 )
for( k = 0; k < m; k++ )
int p = src_top[k];
int q = src_bottom[k];
zone1[0][p]--;
zone0[0][p>>4]--;
zone1[0][q]++;
zone0[0][q>>4]++;
else if( cn == 3 )
for( k = 0; k < m*3; k += 3 )
UPDATE_ACC01( src_top[k], 0, -- );
UPDATE_ACC01( src_top[k+1], 1, -- );
UPDATE_ACC01( src_top[k+2], 2, -- );
UPDATE_ACC01( src_bottom[k], 0, ++ );
UPDATE_ACC01( src_bottom[k+1], 1, ++ );
UPDATE_ACC01( src_bottom[k+2], 2, ++ );
else
assert( cn == 4 );
for( k = 0; k < m*4; k += 4 )
UPDATE_ACC01( src_top[k], 0, -- );
UPDATE_ACC01( src_top[k+1], 1, -- );
UPDATE_ACC01( src_top[k+2], 2, -- );
UPDATE_ACC01( src_top[k+3], 3, -- );
UPDATE_ACC01( src_bottom[k], 0, ++ );
UPDATE_ACC01( src_bottom[k+1], 1, ++ );
UPDATE_ACC01( src_bottom[k+2], 2, ++ );
UPDATE_ACC01( src_bottom[k+3], 3, ++ );
if( (src_step1 > 0 && src_bottom + src_step1 < src_max) ||
(src_step1 < 0 && src_bottom + src_step1 >= src) )
src_bottom += src_step1;
if( y >= m/2 )
src_top += src_step1;
#undef N
#undef UPDATE_ACC
struct MinMax8u
typedef uchar value_type;
typedef int arg_type;
enum SIZE = 1 ;
arg_type load(const uchar* ptr) return *ptr;
void store(uchar* ptr, arg_type val) *ptr = (uchar)val;
void operator()(arg_type& a, arg_type& b) const
int t = CV_FAST_CAST_8U(a - b);
b += t; a -= t;
;
struct MinMax16u
typedef ushort value_type;
typedef int arg_type;
enum SIZE = 1 ;
arg_type load(const ushort* ptr) return *ptr;
void store(ushort* ptr, arg_type val) *ptr = (ushort)val;
void operator()(arg_type& a, arg_type& b) const
arg_type t = a;
a = std::min(a, b);
b = std::max(b, t);
;
struct MinMax16s
typedef short value_type;
typedef int arg_type;
enum SIZE = 1 ;
arg_type load(const short* ptr) return *ptr;
void store(short* ptr, arg_type val) *ptr = (short)val;
void operator()(arg_type& a, arg_type& b) const
arg_type t = a;
a = std::min(a, b);
b = std::max(b, t);
;
struct MinMax32f
typedef float value_type;
typedef float arg_type;
enum SIZE = 1 ;
arg_type load(const float* ptr) return *ptr;
void store(float* ptr, arg_type val) *ptr = val;
void operator()(arg_type& a, arg_type& b) const
arg_type t = a;
a = std::min(a, b);
b = std::max(b, t);
;
#if CV_SSE2
struct MinMaxVec8u
typedef uchar value_type;
typedef __m128i arg_type;
enum SIZE = 16 ;
arg_type load(const uchar* ptr) return _mm_loadu_si128((const __m128i*)ptr);
PS问题 smooth选项
R语言使用pROC包绘制ROC曲线并使用smooth函数绘制平滑的ROC曲线(方法包括:binormaldensityfitdistrlogcondenslogcondens.smooth)