mongodb,redis,hbase三者的定位和区别
Posted 程序员黄小斜
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了mongodb,redis,hbase三者的定位和区别相关的知识,希望对你有一定的参考价值。
Nosql = Not only SQL
mongodb:我觉得定位是取代关系型数据库,想当一个主流数据库。因为他有非结构化、方便扩充字段、写性能优于mysql。万事万物有利有弊,mongodb的内存型缓存内容,让其速度飞快,带来内存率多,掉电数据问题等,加上自身代码还有很多bug带来不如老牌关系型数据库稳定,特别是在主从等分布式环境,其设计也带来诸多问题。
redis:是一个小而美的数据库,主要用在key-value 的内存缓存,读写性能极佳,list,set,hash等几种简单结构使得使用也很简单。缓存与简单是其定位,分布式redis架构的出现,让redis更加广泛的使用,稳坐缓存第一把交椅。
hbase:定位非结构化大数据,可伸缩性好,并不是完全高可用,底层依靠hadoop提供的HDFS,使用时有一整套zookeeper,pig,hive的生态系统。Cassandra可以算一个竞争对手,但Cassandra去中心化的自适应结构又跟Hbase中心化的生态系统完全不同。
mongodb:我觉得定位是取代关系型数据库,想当一个主流数据库。因为他有非结构化、方便扩充字段、写性能优于mysql。万事万物有利有弊,mongodb的内存型缓存内容,让其速度飞快,带来内存率多,掉电数据问题等,加上自身代码还有很多bug带来不如老牌关系型数据库稳定,特别是在主从等分布式环境,其设计也带来诸多问题。
redis:是一个小而美的数据库,主要用在key-value 的内存缓存,读写性能极佳,list,set,hash等几种简单结构使得使用也很简单。缓存与简单是其定位,分布式redis架构的出现,让redis更加广泛的使用,稳坐缓存第一把交椅。
hbase:定位非结构化大数据,可伸缩性好,并不是完全高可用,底层依靠hadoop提供的HDFS,使用时有一整套zookeeper,pig,hive的生态系统。Cassandra可以算一个竞争对手,但Cassandra去中心化的自适应结构又跟Hbase中心化的生态系统完全不同。
//下面主要总结区别和特点
3.HBase(列存储)
两大用途:
- 特别适用于简单数据写入(如“消息类”应用)和海量、结构简单数据的查询(如“详单类”应用)。特别地,适合稀疏表。(个人觉得存个网页内容是极好极好的)
- 作为MapReduce的后台数据源,以支撑离线分析型应用。
4.MongoDB
- 是一个介于关系型和非关系型之间的一个产品吧,类SQL语言,支持索引
- MongoDb在类SQL语句操作方面目前比HBase具备更多一些优势,有二级索引,支持相比于HBase更复杂的集合查找等。
- BSON的数据结构使得处理文档型数据更为直接。支持复杂的数据结构
- MongoDb也支持mapreduce,但由于HBase跟Hadoop的结合更为紧密,Mongo在数据分片等mapreduce必须的属性上不如HBase这么直接,需要额外处理。
- Redis为内存型KV系统,处理的数据量要小于HBase与MongoDB
- Redis很适合用来做缓存,但除此之外,它实际上还可以在一些“读写分离”的场景下作为“读库”来用,特别是用来存放Hadoop或Spark的分析结果。
- Redis的读写性能在100,000 ops/s左右,时延一般为10~70微妙左右;而HBase的单机读写性能一般不会超过1,000ops/s,时延则在1~5毫秒之间。
- Redis的魅力还在于它不像HBase只支持简单的字符串,他还支持集合set,有序集合zset和哈希hash
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。
NoSQL数据库的四大分类
这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。但是如果DBA只对部分值进行查询或更新的时候,Key/value就显得效率低下了。[3] 举例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB.
列存储数据库。
这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra, HBase, Riak.
文档型数据库
文档型数据库的灵感是来自于Lotus Notes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可 以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。如:CouchDB, MongoDb. 国内也有文档型数据库SequoiaDB,已经开源。
图形(Graph)数据库
图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,并且能够扩展到多个服务器上。NoSQL数据库没有标准的查询语言(SQL),因此进行数据库查询需要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。[2] 如:Neo4J, InfoGrid, Infinite Graph.
因此,我们总结NoSQL数据库在以下的这几种情况下比较适用:1、数据模型比较简单;2、需要灵活性更强的IT系统;3、对数据库性能要求较高;4、不需要高度的数据一致性;5、对于给定key,比较容易映射复杂值的环境。
NoSQL数据库的四大分类表格分析
以上是关于mongodb,redis,hbase三者的定位和区别的主要内容,如果未能解决你的问题,请参考以下文章
NoSql视频教程 Redis数据库管理/Memcached技术/MongoDB/HBase开发
HBase vs. MongoDB vs. MySQL vs. Oracle vs. Redi 大PK
linux中mysql,mongodb,redis,hbase数据库操作
大数据架构开发 挖掘分析 Hadoop HBase Hive Storm Spark ZooKeeper Redis MongoDB 机器学习 云计算