盘点66个Pandas函数,轻松搞定“数据清洗”!

Posted 大数据v

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了盘点66个Pandas函数,轻松搞定“数据清洗”!相关的知识,希望对你有一定的参考价值。

导读:之前的文章曾经总结过一些Pandas函数,主要是针对字符串进行一系列的操作。在此基础上,本文又扩展了几倍,全文较长,建议先收藏。

作者:朱小五

来源:凹凸数据(ID:alltodata)

今天我们重新盘点66个Pandas函数合集,包括数据预览、数值数据操作、文本数据操作、行/列操作等等,涉及“数据清洗”的方方面面。

Pandas 是基于NumPy的一种工具,该工具是为解决数据分析任务而创建的。它提供了大量能使我们快速便捷地处理数据的函数和方法。

01 数据预览

对于探索性数据分析来说,做数据分析前需要先看一下数据的总体概况。info()方法用来查看数据集信息,describe()方法将返回描述性统计信息,这两个函数大家应该都很熟悉了。

describe方法默认只给出数值型变量的常用统计量,要想对DataFrame中的每个变量进行汇总统计,可以将其中的参数include设为all。

head()方法和tail() 方法则是分别显示数据集的前n和后n行数据。如果想要随机看N行的数据,可以使用sample()方法。

df.sample(3)

输出:

如果要检查数据中各列的数据类型,可以使用.dtypes;如果想要值查看所有的列名,可以使用.columns。

df.columns

输出:

Index(['日期', '销量'], dtype='object')

前面介绍的函数主要是读取数据集的数据信息,想要获得数据集的大小(长宽),可以使用.shape方法。

df.shape

输出:

(5, 2)

另外,len()可以查看某列的行数,count()则可以查看该列值的有效个数,不包含无效值(Nan)。

02 缺失值与重复值

Pandas清洗数据时,判断缺失值一般采用isnull()方法。此外,isnull().any()会判断哪些”列”存在缺失值,isnull().sum()用于将列中为空的个数统计出来。

df.isnull().any()

输出:

日期    False
销量    True
dtype: bool

发现“销量”这列存在缺失值后,处理办法要么删除dropna() ,要么填充fillna()。

df.fillna(50)

输出:

Pandas清洗数据时,判断重复值一般采用duplicated()方法。如果想要直接删除重复值,可以使用drop_duplicates()方法。此处较为常见,不再过多演示。

03 数值数据操作

我们在处理数据的时候,会遇到批量替换的情况,replace()是很好的解决方法。它既支持替换全部或者某一行,也支持替换指定的某个或指定的多个数值(用字典的形式),还可以使用正则表达式替换。

df["编号"].replace(r'BA.$', value='NEW', regex=True, inplace = True)

输出:

在Pandas模块中, 调⽤rank()⽅法可以实现数据排名。

df["排名"] = df.rank(method="dense").astype("int")

输出:

rank()⽅法中的method参数,它有5个常⽤选项,可以帮助我们实现不同情况下的排名。

clip()方法,用于对超过或者低于某些数的数值进行截断[1],来保证数值在一定范围。比如每月的迟到天数一定是在0-31天之间。

df["迟到天数"] = df["迟到天数"].clip(0,31)

唯一值,unique()是以数组形式返回列的所有唯一值,而nunique()返回的是唯一值的个数。

df["gender"].unique()
df["gender"].nunique()

输出:

在数值数据操作中,apply()函数的功能是将一个自定义函数作用于DataFrame的行或者列;applymap()函数的功能是将自定义函数作用于DataFrame的所有元素。他们通常也与匿名函数lambda一起使用。

df["数量"].apply(lambda x: x+1)

输出:

04 文本数据操作

在对文本型的数据进行处理时,我们会大量应用字符串的函数,来实现对一列文本数据进行操作[2]

  • cat:字符串的拼接

  • contains:判断某个字符串是否包含给定字符

  • startswith/endswith:判断某个字符串是否以...开头/结尾

  • get:获取指定位置的字符串

  • len:计算字符串长度

  • upper、lower:英文大小写转换

  • pad/center:在字符串的左边、右边或左右两边添加给定字符

  • repeat:重复字符串几次

  • slice_replace:使用给定的字符串,替换指定的位置的字符

  • split:分割字符串,将一列扩展为多列

  • strip、rstrip、lstrip:去除空白符、换行符

  • findall:利用正则表达式,去字符串中匹配,返回查找结果的列表

  • extract、extractall:接受正则表达式,抽取匹配的字符串(一定要加上括号)

举例:

df.insert(2, "姓名", 
          df["姓"].str.cat(df["名"], sep=""))

输出:

df["手机号码"] = df["手机号码"].str.slice_replace(3,7,"*"*4)

输出:

df["地址"].str.extract("([\\u4e00-\\u9fa5]+)")

输出:

05 行/列操作

数据清洗时,会将带空值的行删除,此时DataFrame或Series类型的数据不再是连续的索引,可以使用reset_index()重置索引。

df.reset_index(drop=True)

输出:

rename()重命名用于更改行列的标签,即行列的索引。可以传入一个字典或者一个函数。在数据预处理中,比较常用。

df.rename(columns='mark': 'sell', inplace=True)

输出:

行列转置,我们可以使用T属性获得转置后的DataFrame。

df.T

输出:

删除行列,可以使用drop()。

df.drop(columns=["mark"])

输出:

数据分析师在进行数据处理时经常会遇到长宽表互转的情况,这也是一道常见的数据分析面试题。

melt()方法可以将宽表转长表,即表格型数据转为树形数据。

df.melt(id_vars="姓名", var_name="科目", value_name="成绩")

输出:

pivot()方法可以将长表转宽表,即树形数据转为表格型数据。

df.pivot(index='姓名', columns='科目', values='成绩')

输出:

pivot()其实就是用set_index()创建层次化索引,再用unstack()重塑。

df1.set_index(['姓名','科目']).unstack('科目')

数据分组与数据透视表更是一个常见的需求,groupby()方法可以用于数据分组。

df.groupby("科目").mean()

由于pivot_table()数据透视表的参数比较多,就不再使用案例来演示了,具体用法可参考下图。

06 数据筛选

如果是筛选行列的话,通常有以下几种方法:

有时我们需要按条件选择部分列、部分行,一般常用的方法有:

操作

语法

返回结果

选择列

df[col]

Series

按索引选择行

df.loc[label]

Series

按数字索引选择行

df.iloc[loc]

Series

使用切片选择行

df[:5]

DataFrame

用表达式筛选行[3]

df[bool_vec]

DataFrame

除此以外,还有很多方法/函数可以用于“数据筛选”。

如果想直接筛选包含特定字符的字符串,可以使用contains()这个方法。

例如,筛选户籍地址列中包含“黑龙江”这个字符的所有行。

df[df["户籍地址"].str.contains("黑龙江")]

query()查询方法也可以用来筛选数据,比如查询“语文”成绩大于“数学”成绩的行记录。

df.query("语文 > 英语")

输出:

select_dtypes()方法可用于筛选某些数据类型的变量或列。举例,我们仅选择具有数据类型'int64'的列。

df.select_dtypes("int64")

输出:

isin()接受一个列表,判断该列中元素是否在列表中。

name_list = ["张三", "李四"]
df[df["姓名"].isin(name_list)]

输出:

07 数值数据统计运算

在对数值型的数据进行统计运算时,除了有算术运算、比较预算还有各种常见的汇总统计运行函数,具体如下所示。

  • count:非NaN数据项计数

  • sum:求和

  • mean:平均值

  • median:中位数

  • mode:众数

  • max:最大值

  • min:最小值

  • std:标准差

  • var:方差

  • quantile:分位数

  • skew:返回偏态系数

  • kurt:返回峰态系数

举例:

df["语文"].max()

输出:

155

最后,再说一个比较常用的统计运算函数——累加cumsum()。

df["累计销量"] = df["销量"].cumsum()

输出:

注:cumprod()方法是指连乘,用于与连加一样,但使用频率较少。

今天我们盘点了66个Pandas函数合集,但实际还有很多函数在本文中没有介绍,包括时间序列、数据表的拼接与连接等等。此外,那些类似describe()这种大家非常熟悉的方法都省去了代码演示。如果大家有在工作生活中进行“数据清洗”非常有用的Pandas函数,也可以在评论区交流。

参考资料

[1]小小明-Pandas的clip和replace正则替换:

https://blog.csdn.net/as604049322/article/details/105985763

[2]经常被人忽视的:Pandas文本型数据处理:

https://mp.weixin.qq.com/s/Tdcb6jlyCc7XlQWZlvEd_w

[3]《深入浅出Pandas:利用Python进行数据处理与分析》

延伸阅读👇

延伸阅读《深入浅出Pandas》

推荐语:《深入浅出Pandas》这是一本全面覆盖了Pandas使用者的普遍需求和痛点的著作,基于实用、易学的原则,从功能、使用、原理等多个维度对Pandas做了全方位的详细讲解,既是初学者系统学习Pandas难得的入门书,又是有经验的Python工程师案头必不可少的查询手册。

干货直达👇

更多精彩👇

在公众号对话框输入以下关键词

查看更多优质内容!

读书 | 书单 | 干货 讲明白 | 神操作 | 手把手

大数据 | 云计算 | 数据库 | Python | 爬虫 | 可视化

AI | 人工智能 | 机器学习 | 深度学习 | NLP

5G | 中台 | 用户画像 数学 | 算法 数字孪生

据统计,99%的大咖都关注了这个公众号

👇

以上是关于盘点66个Pandas函数,轻松搞定“数据清洗”!的主要内容,如果未能解决你的问题,请参考以下文章

这20个Pandas函数,堪称数据清洗杀手!

深度盘点:整理100个 Pandas 常用函数

手把手教你搞定4类数据清洗操作

大数据清洗4(pandas-DataFrame常用操作)

# yyds干货盘点 # 盘点一道使用pandas.merge()和pandas.join()函数实战应用题目

新星计划数据清洗pandas库清洗数据的七种方式