深度学习目标检测(YoloV5)项目——从0开始到项目落地部署
Posted 知来者逆
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度学习目标检测(YoloV5)项目——从0开始到项目落地部署相关的知识,希望对你有一定的参考价值。
前言
训练和开发环境是win10,显卡RTX3080;cuda10.2,cudnn7.1;OpenCV4.5;yolov5用的是5s的模型,2020年8月13日的发布v3.0这个版本; ncnn版本是20210525;C++ IDE vs2019,Anaconda 3.5。
一、环境安装
1.anaconda环境
- 创建环境
conda create --name yolov5 python=3.7
activate yolov5
- 退出环境
conda deactivate
查看已安装的环境
conda info --env
- 删除环境
conda env remove -n yolov5
2.安装依赖
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip install -r requirements.txt
或者
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
pip install cython matplotlib tqdm opencv-python tensorboard scipy pillow onnx pyyaml pandas seaborn
win下尽量不要用cuda11,试了几次都是要么找不到GPU,要么跑到一半崩了。
二、数据处理
1.数据标注用labelme,身份证的数据我从网上找了一些公开的模板数据,然后用对抗生成了一批数据进行标注,300张样本左右,labelme标注出来的数据格式是xml。
2.在yolo/data 目录下创建一个存放数据集的目录,目录下再分两个目录,JPEGImages存放原始图像,Annotations存在放标签文件。
3.数据标注用labelme标注成.xml,但yolo要的标签格式是.txt,所以要把数据转换过来。
- 数据生成训练集与验证集,在data/xxxx目录下会 train.txt 和val.txt,输出所有标注的类名,并在JPEGImages下生成与文件名对应的.txt文件。
执行命令:
python generate_txt.py --img_path data/XXXXX/JPEGImages --xml_path data/XXXXX/Annotations --out_path data/XXXXX
-
输出标注的类名样例:如[‘ida’, ‘idb’]。
-
生成的.txt文件
类名 归一化后的目标坐标点
0 0.518 0.7724887556221889 0.296 0.15367316341829085
3 0.4475 0.7694902548725637 0.089 0.08620689655172414
- 数据处理代码
- generate_txt.py
import os
import glob
import argparse
import random
import xml.etree.ElementTree as ET
from PIL import Image
from tqdm import tqdm
def get_all_classes(xml_path):
xml_fns = glob.glob(os.path.join(xml_path, '*.xml'))
class_names = []
for xml_fn in xml_fns:
tree = ET.parse(xml_fn)
root = tree.getroot()
for obj in root.iter('object'):
cls = obj.find('name').text
class_names.append(cls)
return sorted(list(set(class_names)))
def convert_annotation(img_path, xml_path, class_names, out_path):
output = []
im_fns = glob.glob(os.path.join(img_path, '*.jpg'))
for im_fn in tqdm(im_fns):
if os.path.getsize(im_fn) == 0:
continue
xml_fn = os.path.join(xml_path, os.path.splitext(os.path.basename(im_fn))[0] + '.xml')
if not os.path.exists(xml_fn):
continue
img = Image.open(im_fn)
height, width = img.height, img.width
tree = ET.parse(xml_fn)
root = tree.getroot()
anno = []
xml_height = int(root.find('size').find('height').text)
xml_width = int(root.find('size').find('width').text)
if height != xml_height or width != xml_width:
print((height, width), (xml_height, xml_width), im_fn)
continue
for obj in root.iter('object'):
cls = obj.find('name').text
cls_id = class_names.index(cls)
xmlbox = obj.find('bndbox')
xmin = int(xmlbox.find('xmin').text)
ymin = int(xmlbox.find('ymin').text)
xmax = int(xmlbox.find('xmax').text)
ymax = int(xmlbox.find('ymax').text)
cx = (xmax + xmin) / 2.0 / width
cy = (ymax + ymin) / 2.0 / height
bw = (xmax - xmin) * 1.0 / width
bh = (ymax - ymin) * 1.0 / height
anno.append(' '.format(cls_id, cx, cy, bw, bh))
if len(anno) > 0:
output.append(im_fn)
with open(im_fn.replace('.jpg', '.txt'), 'w') as f:
f.write('\\n'.join(anno))
random.shuffle(output)
train_num = int(len(output) * 0.9)
with open(os.path.join(out_path, 'train.txt'), 'w') as f:
f.write('\\n'.join(output[:train_num]))
with open(os.path.join(out_path, 'val.txt'), 'w') as f:
f.write('\\n'.join(output[train_num:]))
def parse_args():
parser = argparse.ArgumentParser('generate annotation')
parser.add_argument('--img_path', type=str, help='input image directory')
parser.add_argument('--xml_path', type=str, help='input xml directory')
parser.add_argument('--out_path', type=str, help='output directory')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
class_names = get_all_classes(args.xml_path)
print(class_names)
convert_annotation(args.img_path, args.xml_path, class_names, args.out_path)
三、模型训练
1.model/yolov5s.yaml,更改nc数目。
# parameters
nc: 2 # 检测总类别
depth_multiple: 0.33 # model depth multiple 网络的深度系数
width_multiple: 0.50 # layer channel multiple 卷积核的系数
# anchors 候选框,可以改成自己目标的尺寸,也可以增加候选框
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone: #特征提取模块
# [from, number, module, args]
# from - 输入是什么,-1:上一层的输出结果;
# number - 该层的重复的次数,要乘以系数,小于1则等于1 源码( n = max(round(n * gd), 1) if n > 1 else n)
# module - 层的名字
# args - 卷积核的个数
[[-1, 1, Focus, [64, 3]], # 0-P1/2 # 64要乘以卷积核的个数 64*0.5 = 32个特征图
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, BottleneckCSP, [1024, False]], # 9
]
# YOLOv5 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, BottleneckCSP, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) [17,20,23] #17层、20层、23层;
]
2.在data目录下添加一个xxx.yaml训练数据配置文件。
# download command/URL (optional)
download: bash data/scripts/get_voc.sh
# 训练集txt与验证集txt路径
train: data/xxx/train.txt
val: data/xxx/val.txt
# 总类别数
nc: 2
# 类名
names: ['ida', 'idb']
3.训练参数
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path') # 权重文件,是否在使用预训练权重文件
parser.add_argument('--cfg', type=str, default='', help='model.yaml path') # 网络配置文件
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path') # 训练数据集目录
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path') #超参数配置文件
parser.add_argument('--epochs', type=int, default=300) # 训练迭代次数
parser.add_argument('--batch-size', type=int, default=32, help='total batch size for all GPUs') # batch-size大小
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes') # 训练图像大小
parser.add_argument('--rect', action='store_true', help='rectangular training') #矩形训练
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') # 是否接着上一次的日志权重继续训练
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') # 不保存
parser.add_argument('--notest', action='store_true', help='only test final epoch') # 不测试
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') #超参数范围
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') #是否缓存图像
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') # 用GPU或者CPU进行训练
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') #是否多尺度训练
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') # 是否一个类别
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') # 优化器先择
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers') #win不能改,win上改不改都容易崩
parser.add_argument('--project', default='runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
4.训练命令
- 单卡:
python train.py --cfg models/yolov5s.yaml --data data/ODID.yaml --hyp data/hyps/hyp.scratch.yaml --epochs 100 --multi-scale --device 0
- 多卡:
python train.py --cfg models/yolov5s.yaml --data data/ODID.yaml --hyp data/hyps/hyp.scratch.yaml --epochs 100 --multi-scale --device 0,1
5.测试模型
python test.py --weights runs/train/exp/weights/best.pt --data data/ODID.yaml --device 0 --verbose
--weights: 训练得到的模型
--data:数据配置文件.txt
--device:选择gpu进行评测
--verbose:是否打印每一类的评测指标
OpenCV DNN C++ 推理
1.由于OpenCV DNN中的slice层不支持step为2,所以在转换模型时需要修改代码,修改的地方在models/common.py中Focus类
以上是关于深度学习目标检测(YoloV5)项目——从0开始到项目落地部署的主要内容,如果未能解决你的问题,请参考以下文章
深度学习目标检测:YOLOv5实现红绿灯检测(含红绿灯数据集+训练代码)
深度学习目标检测---使用yolov5训练自己的数据集模型(Windows系统)
深度学习和目标检测系列教程 23-300 :FasterRCNN和yolov5训练飞机目标识别的小项目