深入源码分析Handler 消息机制 LooperMessageQueue 消息同步屏障IdleHandlerMessage 复用
Posted 薛瑄
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深入源码分析Handler 消息机制 LooperMessageQueue 消息同步屏障IdleHandlerMessage 复用相关的知识,希望对你有一定的参考价值。
Handler 线程通信 基本使用
在android 中Handler大多数都是在子线程中发送消息,到主线程中更新UI,下面是基本使用
// 步骤1:在主线程中 通过匿名内部类 创建Handler类对象
mHandler = new Handler()
// 通过复写handlerMessage(),处理其他线程发来的消息
@Override
public void handleMessage(Message msg)
// 处理消息
;
// 采用继承Thread类实现多线程
new Thread()
@Override
public void run()
try
Thread.sleep(3000);
catch (InterruptedException e)
e.printStackTrace();
// 步骤3:创建所需的消息对象
Message msg = Message.obtain();
msg.what = 1; // 消息标识
msg.obj = "A"; // 消息内存存放
// 步骤4:在工作线程中 通过Handler发送消息到消息队列中
mHandler.sendMessage(msg);
.start();
源码分析
再开始流程分析前,先来介绍一下,比较关键的几个类:
- Handler 用于给开发者,实现消息跨线程的发送和处理
- Message 发送的消息
- MessageQueue 消息队列,Handler 发送的消息都会进入这个队列
- Looper 消息处理循环器
Handler的创建
public Handler(Callback callback, boolean async)
//检测当前创建的handler是否可能引起内存泄漏
if (FIND_POTENTIAL_LEAKS)
final Class<? extends Handler> klass = getClass();
//handler 是匿名类或成员类或本地类 并且不是静态的,就可能出现内存泄漏
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0)
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
//获取当前的线程的looper
mLooper = Looper.myLooper();
if (mLooper == null)
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
//获取looper的队列
mQueue = mLooper.mQueue;
//设置消息的回调,发送消息后,如果设置callback,就会触发回调
mCallback = callback;
//true:发送的是异步消息
mAsynchronous = async;
Looper 的创建
看到上面mLooper = Looper.myLooper();
里面都干了什么呢
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
public static @Nullable Looper myLooper()
return sThreadLocal.get();
看到是从ThreadLocal类型的变量中,获取一个Looper。因此不同的线程中会创建不同的Looper实例。
Looper 创建是这样的
public static void prepare()
prepare(true);
private static void prepare(boolean quitAllowed)
if (sThreadLocal.get() != null)
throw new RuntimeException("Only one Looper may be created per thread");
sThreadLocal.set(new Looper(quitAllowed));
private Looper(boolean quitAllowed)
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
也就是说,在使用Handler的时候,要先调用静态函数Looper.prepare()
创建属于当前线程的Looper,在调用Looper.loop()
来开启消息循环,这个循环是个死循环,等待Handler发送过来的消息。
小伙伴可能有疑问为什么,我平时更新UI的时候,没有调用这个,直接创建Handler实例,发送消息就可以了呢?
是因为Android的入口mani()函数中,已经调用过了。而你创建Handler实例是在主线程,也就不能也不需要再创建Looper,否则会报错。
Message 相关
先来看几个重要的成员变量:
- what 消息标识
- arg1,arg2 传递的int参数
- data 可以传送Bundle 数据
- target 发送这个消息的Handler
- next 下一个Message
- flags 是否在使用
Message.obtain()
来获得一个Message的实例,源码写的很高效,这里对消息进行了复用。
public static Message obtain()
//同步操作,避免多个线程,同时对消息池进行操作
//sPool 存放的是,Message 消息队列的队首消息
synchronized (sPoolSync)
if (sPool != null)
//获得队首的Message
Message m = sPool;
//更新sPool 为下一个Message
sPool = m.next;
//当前的Message next置空
m.next = null;
//被使用标志置0
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
//如果sPool 为空,创建一个实例
return new Message();
那么sPool 的队列信息,是在Message 被回收的加入的,具体有两种情况
- 在Looper 中消息被处理后,会调用
msg.recycleUnchecked();
回收Message - 在把消息添加到MessageQueue时enqueueMessage,如果是正在退出,会调用
msg.recycle();
也会回收Message
下面看一下回收的过程
public void recycle()
//检查是否正在使用
if (isInUse())
if (gCheckRecycle)
throw new IllegalStateException("This message cannot be recycled because it "
+ "is still in use.");
return;
recycleUnchecked();
void recycleUnchecked()
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
//Message的成员变量全部情况
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = -1;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync)
//如果消息队列数量小于MAX_POOL_SIZE,就继续添加到队列中
if (sPoolSize < MAX_POOL_SIZE)
//当前消息(即将被回收)的next指向当前队首
next = sPool;
//把sPool指向当前消息,就把消息回收到队列中了
sPool = this;
sPoolSize++;
消息流程
我们从发送消息mHandler.sendMessage(msg);
来看,最终是怎么消息的线程通信,以及内部的一些原理
除了postAtFrontOfQueue
发送消息外,其他的消息发送postAtTime
,postDelayed
,sendMessageDelayed
,sendMessage
最终会把消息发送的时间确定下来,调用 sendMessageAtTime
来处理消息。
Handler类
public boolean sendMessageAtTime(Message msg, long uptimeMillis)
MessageQueue queue = mQueue;
if (queue == null)
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
return enqueueMessage(queue, msg, uptimeMillis);
Handler类
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis)
msg.target = this;
if (mAsynchronous)
msg.setAsynchronous(true);
return queue.enqueueMessage(msg, uptimeMillis);
上面两个函数,很简单,最终去调用queue.enqueueMessage
去把消息插入队列中
MessageQueue类
boolean enqueueMessage(Message msg, long when)
if (msg.target == null)
throw new IllegalArgumentException("Message must have a target.");
//消息是否在使用
if (msg.isInUse())
throw new IllegalStateException(msg + " This message is already in use.");
synchronized (this)
if (mQuitting)
//Loop.quit() 调用了 MessageQueue quit(),会设置mQuitting = true,表示正在退出
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
//设置消息正在使用
msg.markInUse();
msg.when = when;
//下一个要处理的消息
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when)
// New head, wake up the event queue if blocked.
//p 为空,队列中没有消息,或者延迟时间为0,或者延迟时间小于p的延迟时间(也就是需要在p之前执行)
//就把这个消息放在p前面,也就是队首(因为p为下一个要处理的消息)
msg.next = p;
//更新mMessages (下一个要处理的消息)
mMessages = msg;
//是否需要唤醒,因为可能在MessageQueue 中获取message的时候,可能被阻塞
needWake = mBlocked;
else
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
// mBlocked 为阻塞。在取消息函数next()可知,当没有消息的时候,这个参数会置位true
// p.target == null 下一个消息是同步屏障 ,就是优先处理异步消息,这个后面会详细分析
// msg 是异步消息。
//这三个消息同时为true ,才去唤醒线程
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;)
prev = p;
p = p.next;
//prev 表示队列第N个消息,p 表示队列第N+1个消息
if (p == null || when < p.when)
//p为空,说明已经是最后一个消息了
//when < p.when,说明需要在p之前执行
break;
if (needWake && p.isAsynchronous())
//在msg插入到队列中,已有消息是异步的,那就遵从前面的线程状态,不进行唤醒
needWake = false;
//下面两行代码后,prev 表示队列第N个消息,msg表示队列第N+1个消息,p表示队列第N+2个消息
msg.next = p; // invariant: p == prev.next
prev.next = msg;
// We can assume mPtr != 0 because mQuitting is false.
if (needWake)
// 唤醒线程
nativeWake(mPtr);
return true;
之前的Loop.loop() 一直在循环,从MessageQueue中获取消息,下面省略的代码,是计算消息执行时间,和预期时间是否有差异,打印log,这里不进行分析。主要就是三个步骤:
Loop类
public static void loop()
final Looper me = myLooper();
if (me == null)
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
final MessageQueue queue = me.mQueue;
... 省略代码 ...
for (;;)
//1、取出MessageQueue 中的下一个消息
Message msg = queue.next(); // might block
if (msg == null)
// No message indicates that the message queue is quitting.
return;
... 省略代码 ...
try
//2、处理消息
msg.target.dispatchMessage(msg);
... 省略代码 ...
finally
... 省略代码 ...
... 省略代码 ...
//3、回收消息
msg.recycleUnchecked();
接下来,先分析 Message msg = queue.next(); // might block
看它是如何取出消息的,以及如何实现同步屏障(优先处理异步消息),以及IdleHandler的作用·
Message next()
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0)
return null;
//第一次进来才会设置为-1
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;)
if (nextPollTimeoutMillis != 0)
Binder.flushPendingCommands();
//会阻塞线程 时间为nextPollTimeoutMillis
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this)
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
//mMessages 是队列的头
Message msg = mMessages;
if (msg != null && msg.target == null)
// Stalled by a barrier. Find the next asynchronous message in the queue.
//找出下一个异步消息 ,也就是说屏蔽了同步消息。所以 msg.target == null 这样的消息在江湖上叫做 同步屏障的消息。可调用postSyncBarrier()来发出
do
prevMsg = msg;
msg = msg.next;
while (msg != null && !msg.isAsynchronous());
if (msg != null)
if (now < msg.when)
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
else
// Got a message.
//获取到一个新消息,才把阻塞标志设为false
mBlocked = false;
if (prevMsg != null)
//如果是同步屏障了,那么prevMsg !=null, 这里把msg 取出,调整链表指向
//队列的头 mMessages 没有变化
prevMsg.next = msg.next;
else
// 从队列的头取出消息 msg,所以需要更新mMessages
mMessages = msg.next;
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
else
// No more messages.
nextPollTimeoutMillis = -1;
// Process the quit message now that all pending messages have been handled.
if (mQuitting)
dispose();
return null;
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when))
//其实官方已经注释的很清楚,我再啰嗦一下
//第一次进来pendingIdleHandlerCount = -1
//没有需要处理的消息,或者消息要过一会再处理。
//这两个条件同时满足,会进入下面的for循环,也就是IdleHandler的调用
pendingIdleHandlerCount = mIdleHandlers.size();
//如果后续的循环不会再执行IdleHandlers,因为下面最后代码会把pendingIdleHandlerCount 设置为0
if (pendingIdleHandlerCount <= 0)
// No idle handlers to run. Loop and wait some more.
//如果没有要执行的IdleHandler或者是第二次循环,则设置为阻塞中,开始下一次循环
mBlocked = true;
continue;
//创建mPendingIdleHandlers 数组,用来存放设置的IdleHandler
if (mPendingIdleHandlers == null)
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++)
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try
//返回值,true = 下次循环需要继续执行 (也就是keep的意思)
keep = idler.queueIdle();
catch (Throwable t)
Log.wtf(TAG, "IdleHandler threw exception", t);
//下次不需要执行,则删除这个IdleHandler
if (!keep)
synchronized (this)
mIdleHandlers.remove(idler);
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
- 从开始获取消息到获取到一个可用的消息&
以上是关于深入源码分析Handler 消息机制 LooperMessageQueue 消息同步屏障IdleHandlerMessage 复用的主要内容,如果未能解决你的问题,请参考以下文章
Android Handler消息机制02-Looper源码学习
android的消息处理机制(图+源码分析)——Looper,Handler,Message