Efficient-Net基于Efficient-Net效滤网的目标识别算法的MATLAB仿真
Posted fpga&matlab
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Efficient-Net基于Efficient-Net效滤网的目标识别算法的MATLAB仿真相关的知识,希望对你有一定的参考价值。
%定义efficientnet的结构
layers = [
imageInputLayer([128 128 3]);%注意,128,128,3是训练样本的大小,这个和参考文献不一样,要根据实际输入设置
%stage1
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 1
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(floor(resl)+1,'Stride',2);
%stage2
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 1
batchNormalizationLayer;
reluLayer;
%stage3
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 2
batchNormalizationLayer;
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 2
batchNormalizationLayer;
reluLayer;
%stage4
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 2
batchNormalizationLayer;
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 2
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(floor(resl)+1,'Stride',2);
%stage5
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 3
batchNormalizationLayer;
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 3
batchNormalizationLayer;
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 3
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(floor(resl)+1,'Stride',2);
%stage6
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 3
batchNormalizationLayer;
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 3
batchNormalizationLayer;
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 3
batchNormalizationLayer;
reluLayer;
%stage7
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 4
batchNormalizationLayer;
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 4
batchNormalizationLayer;
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 4
batchNormalizationLayer;
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 4
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(floor(resl)+1,'Stride',2);
%stage8
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 1
batchNormalizationLayer;
reluLayer;
maxPooling2dLayer(floor(resl)+1,'Stride',2);
%stage9
convolution2dLayer(floor(depth)+1,floor(width)+1,'Padding','same');%layer 1
batchNormalizationLayer;
reluLayer;
%FC
fullyConnectedLayer(CLASSNUM);
%softmax
softmaxLayer;
%输出分类结果
classificationLayer;];
options = trainingOptions('sgdm', ...
'InitialLearnRate', 0.01, ...
'MaxEpochs', 200, ...
'Shuffle', 'every-epoch', ...
'ValidationData', imdsValidation, ...
'ValidationFrequency', 5, ...
'Verbose', false, ...
'Plots', 'training-progress');
rng(1);
%使用训练集训练网络
net = trainNetwork(imdsTrain, layers, options);
训练过程如下:
训练精度为94.17%。
平均损失过程如下:
不同训练样本数量对应的训练性能(注意,每次训练会有一定的波动和偏差)
训练样本比例 | 改进前的训练性能 | 改进后的训练性能 |
5% | 85.46% | 92.23% |
10% | 89.20% | 90.08% |
20% | 94.65% | 92.94% |
40% | 93.53% | 94.82% |
60% | 94.66% | 98.06% |
80% | 94.67% | 98.08% |
90% | 98.08% | 100% |
A05-79
以上是关于Efficient-Net基于Efficient-Net效滤网的目标识别算法的MATLAB仿真的主要内容,如果未能解决你的问题,请参考以下文章
论文阅读 Colar: Effective and Efficient Online Action Detection by Consulting Exemplars
论文阅读 Colar: Effective and Efficient Online Action Detection by Consulting Exemplars
论文阅读 Colar: Effective and Efficient Online Action Detection by Consulting Exemplars
论文翻译:2020_RESIDUAL ACOUSTIC ECHO SUPPRESSION BASED ON EFFICIENT MULTI-TASK CONVOLUTIONAL NEURAL NETW
EfficientDet:Scalable and Efficient Object Detection
Efficient Estimation of Word Representations in Vector Space 笔记