R语言构建xgboost模型:控制训练信息输出级别verbose参数
Posted Data+Science+Insight
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言构建xgboost模型:控制训练信息输出级别verbose参数相关的知识,希望对你有一定的参考价值。
R语言构建xgboost模型:控制训练信息输出级别verbose参数
目录
R语言构建xgboost模型:控制训练信息输出级别verbose参数
以上是关于R语言构建xgboost模型:控制训练信息输出级别verbose参数的主要内容,如果未能解决你的问题,请参考以下文章
R语言使用caret包构建xgboost模型(xgbDART算法使用的dropout思想)构建回归模型通过method参数指定算法名称通过trainControl函数控制训练过程
R语言构建xgboost模型:交叉验证(cross validation)训练xgboost模型
R语言构建xgboost模型:使用xgboost模型训练tweedie回归模型,特征工程(dataframe转化到data.table独热编码缺失值删除DMatrix结构生成)
R语言构建xgboost模型并评估模型(测试集训练集每一轮):误分类率指标(misclassification rate)logloss
R语言构建xgboost模型使用早停法训练模型(early stopping):自定义损失函数(目标函数,loss function)评估函数(evaluation function)
R语言caret包构建xgboost模型实战:特征工程(连续数据离散化因子化无用特征删除)配置模型参数(随机超参数寻优10折交叉验证)并训练模型