Theano-Deep Learning Tutorials 笔记:Recurrent Neural Networks with Word Embeddings

Posted slim1017

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Theano-Deep Learning Tutorials 笔记:Recurrent Neural Networks with Word Embeddings相关的知识,希望对你有一定的参考价值。

教程地址:http://deeplearning.net/tutorial/rnnslu.html

相关论文:Grégoire Mesnil, Xiaodong He, Li Deng and Yoshua Bengio - Investigation of Recurrent Neural Network Architectures and Learning Methods for Spoken Language Understanding

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He, Larry Heck, Gokhan Tur, Dong Yu and Geoffrey Zweig - Using Recurrent Neural Networks for Slot Filling in Spoken Language Understanding

Task

The Slot-Filling (Spoken Language Understanding)是给句子中每个word分配标签,是一个分类问题。

 

Dataset

数据集是DARPA的一个小型数据集:ATIS (Airline Travel Information System),下面例子使用了Inside Outside Beginning (IOB) representation。

Input (words)showflightsfromBostontoNewYorktoday
Output (labels)OOOB-deptOB-arrI-arrB-date

数据集中训练集句子4978个,word 56590个;测试集句子893,word 9198个;平均句长 15;The number of classes (different slots) is 128 including the O label (NULL).

 

As Microsoft Research people,把训练集中只出现一次的word标记为<UNK>,用这个标记去代表测试集中没见过的word;As Ronan Collobert and colleagues,把数字序列换成 DIGIT,如1984 变成 DIGITDIGITDIGITDIGIT。

 

把训练集分80%为训练集,20%为验证集。当F1 score为95%时,小数据集对性能的影响会大于0.6%。详见Microsoft Research people

下面有3个实验评价指标:PrecisionRecallF1 score

前两个看下图很好理解,在模式识别领域,一般都指定recall为多少情况下,比较precision的好坏。F1 score是根据Precision和Recall计算的。

教程使用conlleval PERL script(是一个计算上述指标的脚本代码)来评价性能。

 

Recurrent Neural Network Model

Raw input encoding

每个word对应一个token。在ATIS字典中,每个token对应一个index。每个句子都是一个index(int32)的数组。每个set(训练集,测试集,验证集)是 list of arrays of indexes(list是python的list)。python字典用来把 indexes 映射到 words 。

>>> sentence
array([383, 189,  13, 193, 208, 307, 195, 502, 260, 539,
        7,  60,  72, 8, 350, 384], dtype=int32)
>>> map(lambda x: index2word[x], sentence)
['please', 'find', 'a', 'flight', 'from', 'miami', 'florida',
        'to', 'las', 'vegas', '<UNK>', 'arriving', 'before', 'DIGIT', "o'clock", 'pm']

 

map(functioniterable...)  第一个参数为函数,第二个参数为输入

就是对 iterable 中每个元素都运行 function 函数,最后返回 list(list中为每个元素的函数运行结果)。

>>> def add100(x):
...     return x+100
... 
>>> hh = [11,22,33]
>>> map(add100,hh)
[111, 122, 133]

本例子中 function为add100,iterable为hh。hh中每个元素都加了100,然后返回 list。

lambda x: index2word[x] 这句是一个单行函数,所以对应map参数中的function。用 lambda 可以省去定义函数的过程(一般的定义就是用def....),代码更简洁。

 

所以map(lambda x: index2word[x], sentence)功能就是对sentence中每个数,都调用 index2word[x] 找出其对应的word。

 

同样地,通过 index 得出 label:

>>> labels
array([126, 126, 126, 126, 126,  48,  50, 126,  78, 123,  81, 126,  15,
        14,  89,  89], dtype=int32)
>>> map(lambda x: index2label[x], labels)
['O', 'O', 'O', 'O', 'O', 'B-fromloc.city_name', 'B-fromloc.state_name',
        'O', 'B-toloc.city_name', 'I-toloc.city_name', 'B-toloc.state_name',
        'O', 'B-arrive_time.time_relative', 'B-arrive_time.time',
        'I-arrive_time.time', 'I-arrive_time.time']


Context window

context window 就是根据指定的 window size (1,3,5...)把句子中的每个word及其前后(1,3,5...个)word提取出来。

返回结果为 list of list of indexes。

def contextwin(l, win):
    '''
    win :: int corresponding to the size of the window
    given a list of indexes composing a sentence

    l :: array containing the word indexes

    it will return a list of list of indexes corresponding
    to context windows surrounding each word in the sentence
    '''
    assert (win % 2) == 1
    assert win >= 1
    l = list(l)

    lpadded = win // 2 * [-1] + l + win // 2 * [-1]
    out = [lpadded[i:(i + win)] for i in range(len(l))]

    assert len(out) == len(l)
    return out


index -1 是word在句子开头结尾时,出现前面或后面没有word 这种情况就填上 -1。

看下面这个例子就很清楚: 其中0,1,2,3,4 为word的index。

>>> x
array([0, 1, 2, 3, 4], dtype=int32)
>>> contextwin(x, 3)
[[-1, 0, 1],
 [ 0, 1, 2],
 [ 1, 2, 3],
 [ 2, 3, 4],
 [ 3, 4,-1]]
>>> contextwin(x, 7)
[[-1, -1, -1, 0, 1, 2, 3],
 [-1, -1,  0, 1, 2, 3, 4],
 [-1,  0,  1, 2, 3, 4,-1],
 [ 0,  1,  2, 3, 4,-1,-1],
 [ 1,  2,  3, 4,-1,-1,-1]]


上面这个matrix中,每行表示一个 word 的context window。

 

Word embeddings

现在我们得到了contex windows,是一个 indexes 的矩阵,每个元素是一个index,对应一个 word(通过index2word可以得出word)。

现在需要把 index 转换成 embeddings (对应每个 word 的实数向量)。

import theano, numpy
from theano import tensor as T

# nv :: size of our vocabulary
# de :: dimension of the embedding space
# cs :: context window size
nv, de, cs = 1000, 50, 5

embeddings = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0, \\
    (nv+1, de)).astype(theano.config.floatX)) # add one for PADDING at the end

idxs = T.imatrix() # as many columns as words in the context window and as many lines as words in the sentence
x    = self.emb[idxs].reshape((idxs.shape[0], de*cs))

x为一个矩阵,大小为(句子中单词数,de 乘以 cs)。

 

例子: 句子中单词数为 5,de 为 50 ,cs 为 7,所以结果矩阵大小为(5,50*7)

>>> sample
array([0, 1, 2, 3, 4], dtype=int32)
>>> csample = contextwin(sample, 7)
[[-1, -1, -1, 0, 1, 2, 3],
 [-1, -1,  0, 1, 2, 3, 4],
 [-1,  0,  1, 2, 3, 4,-1],
 [ 0,  1,  2, 3, 4,-1,-1],
 [ 1,  2,  3, 4,-1,-1,-1]]
>>> f = theano.function(inputs=[idxs], outputs=x)
>>> f(csample)
array([[-0.08088442,  0.08458307,  0.05064092, ...,  0.06876887,
        -0.06648078, -0.15192257],
       [-0.08088442,  0.08458307,  0.05064092, ...,  0.11192625,
         0.08745284,  0.04381778],
       [-0.08088442,  0.08458307,  0.05064092, ..., -0.00937143,
         0.10804889,  0.1247109 ],
       [ 0.11038255, -0.10563177, -0.18760249, ..., -0.00937143,
         0.10804889,  0.1247109 ],
       [ 0.18738101,  0.14727569, -0.069544  , ..., -0.00937143,
         0.10804889,  0.1247109 ]], dtype=float32)
>>> f(csample).shape
(5, 350)


这个matrix 是 context window word embeddings  序列。

每行为一个向量,对应句子中一个 word,现在很容易应用RNN了。

 

Elman recurrent neural network

(Elman) recurrent neural network (E-RNN)把当前时刻(time t)的输入以及前一时刻(time t-1)的隐藏层状态作为输入。

上节中的矩阵,每行就代表一个时刻 time t。第0行对应 t=0,第一行对应 t=1......。

 

E-RNN中需要学习的参数如下:

  • the word embeddings (real-valued matrix)
  • the initial hidden state (real-value vector)
  • two matrices for the linear projection of the input t and the previous hidden layer state t-1(神经网络中的权重W)
  • (optional) bias. Recommendation: don’t use it.
  • softmax classification layer on top

    超参数如下:

  • dimension of the word embedding(de,50)
  • size of the vocabulary
  • number of hidden units
  • number of classes
  • random seed + way to initialize the model
    class RNNSLU(object):
        ''' elman neural net model '''
        def __init__(self, nh, nc, ne, de, cs):
            '''
            nh :: dimension of the hidden layer
            nc :: number of classes
            ne :: number of word embeddings in the vocabulary
            de :: dimension of the word embeddings
            cs :: word window context size
            '''
            # parameters of the model
            self.emb = theano.shared(name='embeddings',
                                     value=0.2 * numpy.random.uniform(-1.0, 1.0,
                                     (ne+1, de))
                                     # add one for padding at the end
                                     .astype(theano.config.floatX))
            self.wx = theano.shared(name='wx',
                                    value=0.2 * numpy.random.uniform(-1.0, 1.0,
                                    (de * cs, nh))
                                    .astype(theano.config.floatX))
            self.wh = theano.shared(name='wh',
                                    value=0.2 * numpy.random.uniform(-1.0, 1.0,
                                    (nh, nh))
                                    .astype(theano.config.floatX))
            self.w = theano.shared(name='w',
                                   value=0.2 * numpy.random.uniform(-1.0, 1.0,
                                   (nh, nc))
                                   .astype(theano.config.floatX))
            self.bh = theano.shared(name='bh',
                                    value=numpy.zeros(nh,
                                    dtype=theano.config.floatX))
            self.b = theano.shared(name='b',
                                   value=numpy.zeros(nc,
                                   dtype=theano.config.floatX))
            self.h0 = theano.shared(name='h0',
                                    value=numpy.zeros(nh,
                                    dtype=theano.config.floatX))
    
            # bundle
            self.params = [self.emb, self.wx, self.wh, self.w,
                           self.bh, self.b, self.h0]
    

    ne=nv (size of our vocabulary,1000)?

    emb大小为(ne+1,de)每行对应vocabulary中一个word,表明如何把这个word转换成一个de维的向量。emb这个matrix也是需要在训练中学习的。

     

    通过embedding matrix得出输入:

    idxs = T.imatrix()
            x = self.emb[idxs].reshape((idxs.shape[0], de*cs))
            y_sentence = T.ivector('y_sentence')  # labels
    


    用 scan (theano带的)来实现 递归:

    def recurrence(x_t, h_tm1):
                h_t = T.nnet.sigmoid(T.dot(x_t, self.wx)
                                     + T.dot(h_tm1, self.wh) + self.bh)
                s_t = T.nnet.softmax(T.dot(h_t, self.w) + self.b)
                return [h_t, s_t]
    
            [h, s], _ = theano.scan(fn=recurrence,
                                    sequences=x,
                                    outputs_info=[self.h0, None],
                                    n_steps=x.shape[0])
    
            p_y_given_x_sentence = s[:, 0, :]
            y_pred = T.argmax(p_y_given_x_sentence, axis=1)
    


    Theano自动计算梯度,最大化 log-likelihood:(这里和教程给的代码其实不一样,代码中损失函数,训练都是用的句子中最后一个词,这里给出的是整个句子,如 p_y_given_x_lastword = s[-1,0,:],-1表示取末尾)

     lr = T.scalar('lr')
    
            sentence_nll = -T.mean(T.log(p_y_given_x_sentence)
                                   [T.arange(x.shape[0]), y_sentence])
            sentence_gradients = T.grad(sentence_nll, self.params)
            sentence_updates = OrderedDict((p, p - lr*g)
                                           for p, g in
                                           zip(self.params, sentence_gradients))
    

     

    分类,训练函数:

    self.classify = theano.function(inputs=[idxs], outputs=y_pred)
            self.sentence_train = theano.function(inputs=[idxs, y_sentence, lr],
                                                  outputs=sentence_nll,
                                                  updates=sentence_updates)
    


    为了保证 word embeddings(50维向量) 在单位球上,需在每次更新后归一化:

    self.normalize = theano.function(inputs=[],
                                             updates=self.emb:
                                                      self.emb /
                                                      T.sqrt((self.emb**2)
                                                      .sum(axis=1))
                                                      .dimshuffle(0, 'x'))
    



     

    Training

    Updates

    使用随机梯度下降,一个句子为一个minibatch,每一个句子更新一次参数。每次更新后,都要对 word embeddings 归一化。

     

    Stopping Criterion

    Early-stoppong,按给定数量的epochs训练,每次epoch后都在验证集上测试 F1 score,保留最佳模型。

    Hyper-Parameter Selection

    使用 KISS random search。

    超参如下:

  • learning rate : uniform([0.05,0.01])
  • window size : random value from 3,...,19
  • number of hidden units : random value from 100,200
  • embedding dimension : random value from 50,100


     

    Word Embedding Nearest Neighbors

    教程目的是用RNN做 word embedding,就是如何把 word 变成向量更好,通过训练,不断更新emb参数矩阵,最终得出结果。

    通过 L2 (欧氏距离)距离 和 cosine 距离两种方式判断 word 间的相似度,两种方式结果一样,k近邻如下:

    atlantabackap80butaircraftbusinessaaugustactuallycheap
    phoenixliveap57ifplanecoachpeopleseptemberprovideweekday
    denverlivesapupservicefirstdojanuarypricesweekdays
    tacomabothconnectionsaairplanefourthbutjunestopam
    columbushowtomorrownowseatingthriftnumbersdecembernumberearly
    seattlemebeforeamountstandtenthabbreviationnovemberflightsfo
    minneapolisoutearliestmorethatsecondifapriltheremilwaukee
    pittsburghotherconnectabbreviationonfifthupjulyservingjfk
    ontarioplanethriftrestrictionsturbopropthirdservejfkthankshortest
    montrealservicecoachmeanmeantwelfthdatabaseoctoberticketbwi
    philadelphiafaretodayinterestedamountsixthpassengersmayarelastest

    由于vocabulary只有500个words,所有效果一般。

以上是关于Theano-Deep Learning Tutorials 笔记:Recurrent Neural Networks with Word Embeddings的主要内容,如果未能解决你的问题,请参考以下文章

Theano-Deep Learning Tutorials 笔记:Stacked Denoising Autoencoders (SdA)

Theano-Deep Learning Tutorials 笔记:Getting Started

Theano-Deep Learning Tutorials 笔记:Multilayer Perceptron

Theano-Deep Learning Tutorials 笔记:Classifying MNIST digits using Logistic Regression

Theano-Deep Learning Tutorials 笔记:Convolutional Neural Networks (LeNet)

Theano-Deep Learning Tutorials 笔记:Recurrent Neural Networks with Word Embeddings