MobileNetV3 实战:植物幼苗分类(pytorch)

Posted AI浩

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MobileNetV3 实战:植物幼苗分类(pytorch)相关的知识,希望对你有一定的参考价值。

文章目录

摘要

本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,演示如何使用pytorch版本的mobilenetv3图像分类模型实现分类任务。

通过本文你和学到:

1、如何从torchvision.models调用mobilenetv3模型?

2、如何自定义数据集加载方式?

3、如何使用Cutout数据增强?

4、如何使用Mixup数据增强。

5、如何实现训练和验证。

6、如何使用余弦退火调整学习率?

7、预测的两种写法。

mobilenetv3简介

MobileNetV3 是由 google 团队在 2019 年提出的,是mobilenet系列的第三个版本,其参数是由NAS(network architecture search)搜索获取的,在ImageNet 分类任务中和V2相比正确率上升了 3.2%,计算延时还降低了 20%。V1里提出了深度可分离卷积,V2在V1的基础上增加了线性瓶颈(Linear Bottleneck)和倒残差(Inverted Residual),那么V3又有哪些特点呢?

先看一下V3的网络结构,V3版本有两个,一个是Large 和 Small,分别适用于不同的场景。网路结构如下:

上表为具体的参数设置,其中bneck是网络的基本结构。SE代表是否使用通道注意力机制。NL代表激活函数的类型,包括HS(h-swish),RE(ReLU)。NBN 代表没有BN操作。s 是stride的意思,网络使用卷积stride操作进行降采样,没有使用pooling操作。

MobileNetV3 的特点:

  1. 继承V1的深度可分离卷积和V2的具有线性瓶颈的残差结构。
  2. 使用NetAdapt算法获得卷积核和通道的最佳数量。
  3. 使用了一种新的激活函数h-swish(x)代替Relu6,其公式:xRelu6(x + 3)/6。
  4. 引入SE通道注意力结构,使用了Relu6(x + 3)/6来近似SE模块中的sigmoid。
  5. 模型分为Large和Small,在ImageNet 分类任务中和V2相比,Large正确率上升了 3.2%,计算延时还降低了 20%。

MobileNetV3代码实现(pytorch):

https://wanghao.blog.csdn.net/article/details/121607296

数据增强Cutout和Mixup

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

pip install torchtoolbox

Cutout实现,在transforms中。

from torchtoolbox.transform import Cutout

# 数据预处理

transform = transforms.Compose([
    transforms.Resize((224, 224)),
    Cutout(),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])

Mixup实现,在train方法中。需要导入包:from torchtoolbox.tools import mixup_data, mixup_criterion

    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)
        data, labels_a, labels_b, lam = mixup_data(data, target, alpha)
        optimizer.zero_grad()
        output = model(data)
        loss = mixup_criterion(criterion, output, labels_a, labels_b, lam)
        loss.backward()
        optimizer.step()
        print_loss = loss.data.item()

项目结构

MobileNetV3_demo
├─data
│  ├─test
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet
├─dataset
│  └─dataset.py
├─train.py
├─test1.py
└─test.py

导入项目使用的库

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from dataset.dataset import SeedlingData
from torch.autograd import Variable
from torchvision.models import mobilenet_v3_large
from torchtoolbox.tools import mixup_data, mixup_criterion
from torchtoolbox.transform import Cutout

设置全局参数

设置学习率、BatchSize、epoch等参数,判断环境中是否存在GPU,如果没有则使用CPU。建议使用GPU,CPU太慢了。

# 设置全局参数
modellr = 1e-4
BATCH_SIZE = 16
EPOCHS = 300
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

图像预处理与增强

数据处理比较简单,加入了Cutout、做了Resize和归一化。

# 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    Cutout(),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])

])
transform_test = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

读取数据

将数据集解压后放到data文件夹下面,如图:

然后我们在dataset文件夹下面新建 init.py和dataset.py,在datasets.py文件夹写入下面的代码:

# coding:utf8
import os
from PIL import Image
from torch.utils import data
from torchvision import transforms as T
from sklearn.model_selection import train_test_split
 
Labels = 'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3,
          'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8,
          'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11
 
 
class SeedlingData (data.Dataset):
 
    def __init__(self, root, transforms=None, train=True, test=False):
        """
        主要目标: 获取所有图片的地址,并根据训练,验证,测试划分数据
        """
        self.test = test
        self.transforms = transforms
 
        if self.test:
            imgs = [os.path.join(root, img) for img in os.listdir(root)]
            self.imgs = imgs
        else:
            imgs_labels = [os.path.join(root, img) for img in os.listdir(root)]
            imgs = []
            for imglable in imgs_labels:
                for imgname in os.listdir(imglable):
                    imgpath = os.path.join(imglable, imgname)
                    imgs.append(imgpath)
            trainval_files, val_files = train_test_split(imgs, test_size=0.3, random_state=42)
            if train:
                self.imgs = trainval_files
            else:
                self.imgs = val_files
 
    def __getitem__(self, index):
        """
        一次返回一张图片的数据
        """
        img_path = self.imgs[index]
        img_path=img_path.replace("\\\\",'/')
        if self.test:
            label = -1
        else:
            labelname = img_path.split('/')[-2]
            label = Labels[labelname]
        data = Image.open(img_path).convert('RGB')
        data = self.transforms(data)
        return data, label
 
    def __len__(self):
        return len(self.imgs)

说一下代码的核心逻辑:

第一步 建立字典,定义类别对应的ID,用数字代替类别。

第二步 在__init__里面编写获取图片路径的方法。测试集只有一层路径直接读取,训练集在train文件夹下面是类别文件夹,先获取到类别,再获取到具体的图片路径。然后使用sklearn中切分数据集的方法,按照7:3的比例切分训练集和验证集。

第三步 在__getitem__方法中定义读取单个图片和类别的方法,由于图像中有位深度32位的,所以我在读取图像的时候做了转换。

然后我们在train.py调用SeedlingData读取数据 ,记着导入刚才写的dataset.py(from dataset.dataset import SeedlingData)

dataset_train = SeedlingData('data/train', transforms=transform, train=True)
dataset_test = SeedlingData("data/train", transforms=transform_test, train=False)
# 读取数据
print(dataset_train.imgs)

# 导入数据
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

设置模型

  • 设置loss函数为nn.CrossEntropyLoss()。
  • 设置模型为mobilenet_v3_large,预训练设置为true,num_classes设置为12。
  • 优化器设置为adam。
  • 学习率调整策略选择为余弦退火。
# 实例化模型并且移动到GPU
criterion = nn.CrossEntropyLoss()
model_ft = mobilenet_v3_large(pretrained=True)
print(model_ft)
num_ftrs = model_ft.classifier[3].in_features
model_ft.classifier[3] = nn.Linear(num_ftrs, 12)
model_ft.to(DEVICE)
print(model_ft)
# 选择简单暴力的Adam优化器,学习率调低
optimizer = optim.Adam(model_ft.parameters(), lr=modellr)
cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer,T_max=20,eta_min=1e-9)

定义训练和验证函数

# 定义训练过程
alpha=0.2
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    sum_loss = 0
    total_num = len(train_loader.dataset)
    print(total_num, len(train_loader))
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)
        data, labels_a, labels_b, lam = mixup_data(data, target, alpha)
        optimizer.zero_grad()
        output = model(data)
        loss = mixup_criterion(criterion, output, labels_a, labels_b, lam)
        loss.backward()
        optimizer.step()
        lr = optimizer.state_dict()['param_groups'][0]['lr']
        print_loss = loss.data.item()
        sum_loss += print_loss
        if (batch_idx + 1) % 10 == 0:
            print('Train Epoch:  [/ (:.0f%)]\\tLoss: :.6f\\tLR::.9f'.format(
                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),
                       100. * (batch_idx + 1) / len(train_loader), loss.item(),lr))
    ave_loss = sum_loss / len(train_loader)
    print('epoch:,loss:'.format(epoch, ave_loss))

ACC=0
# 验证过程
def val(model, device, test_loader):
    global ACC
    model.eval()
    test_loss = 0
    correct = 0
    total_num = len(test_loader.dataset)
    print(total_num, len(test_loader))
    with torch.no_grad():
        for data, target in test_loader:
            data, target = Variable(data).to(device), Variable(target).to(device)
            output = model(data)
            loss = criterion(output, target)
            _, pred = torch.max(output.data, 1)
            correct += torch.sum(pred == target)
            print_loss = loss.data.item()
            test_loss += print_loss
        correct = correct.data.item()
        acc = correct / total_num
        avgloss = test_loss / len(test_loader)
        print('\\nVal set: Average loss: :.4f, Accuracy: / (:.0f%)\\n'.format(
            avgloss, correct, len(test_loader.dataset), 100 * acc))
        if acc > ACC:
            torch.save(model_ft, 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')
            ACC = acc


# 训练

for epoch in range(1, EPOCHS + 1):
    train(model_ft, DEVICE, train_loader, optimizer, epoch)
    cosine_schedule.step()
    val(model_ft, DEVICE, test_loader)

运行结果:

测试

我介绍两种常用的测试方式,第一种是通用的,通过自己手动加载数据集然后做预测,具体操作如下:

测试集存放的目录如下图:

第一步 定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

第二步 定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

第三步 加载model,并将模型放在DEVICE里,

第四步 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。

import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import os
classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed',
           'Common wheat','Fat Hen', 'Loose Silky-bent',
           'Maize','Scentless Mayweed','Shepherds Purse','Small-flowered Cranesbill','Sugar beet')
transform_test = transforms.Compose([
         transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
 
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE)
 
path='data/test/'
testList=os.listdir(path)
for file in testList:
        img=Image.open(path+file)
        img=transform_test(img)
        img.unsqueeze_(0)
        img = Variable(img).to(DEVICE)
        out=model(img)
        # Predict
        _, pred = torch.max(out.data, 1)
        print('Image Name:,predict:'.format(file,classes[pred.data.item()]))

运行结果:

第二种 使用自定义的Dataset读取图片

import torch.utils.data.distributed
import torchvision.transforms as transforms
from dataset.dataset import SeedlingData
from torch.autograd import Variable
 
classes = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed',
           'Common wheat','Fat Hen', 'Loose Silky-bent',
           'Maize','Scentless Mayweed','Shepherds Purse','Small-flowered Cranesbill','Sugar beet')
transform_test = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
 
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.load("model.pth")
model.eval()
model.to(DEVICE)
 
dataset_test =SeedlingData('data/test/', transform_test,test=True)
print(len(dataset_test))
# 对应文件夹的label
 
for index in range(len(dataset_test)):
    item = dataset_test[index]
    img, label = item
    img.unsqueeze_(0)
    data = Variable(img).to(DEVICE)
    output = model(data)
    _, pred = torch.max(output.data, 1)
    print('Image Name:,predict:'.format(dataset_test.imgs[index], classes[pred.data.item()]))
    index += 1
 

运行结果:


完整代码:
https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/79435440

以上是关于MobileNetV3 实战:植物幼苗分类(pytorch)的主要内容,如果未能解决你的问题,请参考以下文章

MobileNet实战:tensorflow2.X版本,MobileNetV3图像分类任务(大数据集)

MobileNet实战:tensorflow2.X版本,MobileNetV3图像分类任务(小数据集)

MobileNet实战:tensorflow2.X版本,MobileNetV3图像分类任务(小数据集)

图像分类实战——使用VGG16实现对植物幼苗的分类(pytroch)

MPViT实战:植物幼苗分类

MPViT实战:植物幼苗分类