TensorFlow by Google 使用排序 APIMachine Learning Foundations: Ep #9 - Using the Sequencing APIs
Posted AI架构师易筋
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TensorFlow by Google 使用排序 APIMachine Learning Foundations: Ep #9 - Using the Sequencing APIs相关的知识,希望对你有一定的参考价值。
练习
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
sentences = [
'I love my dog',
'I love my cat',
'You love my dog!',
'Do you think my dog is amazing?'
]
tokenizer = Tokenizer(num_words = 100, oov_token="<OOV>")
tokenizer.fit_on_texts(sentences)
word_index = tokenizer.word_index
sequences = tokenizer.texts_to_sequences(sentences)
padded = pad_sequences(sequences, maxlen=5)
print("\\nWord Index = " , word_index)
print("\\nSequences = " , sequences)
print("\\nPadded Sequences:")
print(padded)
# Try with words that the tokenizer wasn't fit to
test_data = [
'i really love my dog',
'my dog loves my manatee'
]
test_seq = tokenizer.texts_to_sequences(test_data)
print("\\nTest Sequence = ", test_seq)
padded = pad_sequences(test_seq, maxlen=10)
print("\\nPadded Test Sequence: ")
print(padded)
参考
https://youtu.be/L3suP4g8p7U
以上是关于TensorFlow by Google 使用排序 APIMachine Learning Foundations: Ep #9 - Using the Sequencing APIs的主要内容,如果未能解决你的问题,请参考以下文章