学废了嘛?提升 Python 代码运行速度的6个技巧真香啊

Posted Python学习与数据挖掘

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了学废了嘛?提升 Python 代码运行速度的6个技巧真香啊相关的知识,希望对你有一定的参考价值。

如果有人问你 “什么是最快的编程语言?”,你可能会说"肯定不是 Python"

其实,Python 比我们想象的运行的要快。我们之所以有先入为主的认为Python运行慢,可能是我们平常的误用和缺乏使用技巧知识。

推荐文章

接下来让我们看看如何用一些简单的Trick来提高我们程序的运行性能,喜欢本文点赞、收藏、关注。

1、使用内置函数

Python中的许多内置函数都是用C实现的,并且经过了很好的优化。因此,如果熟悉这些内置函数,就可以提高Python代码的性能。一些常用的内置函数有sum()、len()、map()、max()等。

假设我们有一个包含单词的列表,我们希望每个单词的首字母均变为大写。此时使用map()函数是不错的选择。

一般版本:

new_list = []
word_list = ["i", "am", "a", "python", "programmer"]
for word in word_list:
    new_list.append(word.capitalize())

改进版本:

word_list = ["i", "am", "a", "python", "programmer"]
new_list = list(map(str.capitalize, word_list))

时间对比:

import time
new_list = []
word_list = ["i", "am", "a", "python", "programmer"]

start = time.time()

for word in word_list:
    new_list.append(word.capitalize())
print(time.time() - start, "seconds")

start = time.time()

new_list = list(map(str.capitalize, word_list))
print(time.time() - start, "seconds")

运行结果:

1.0013580322265625e-05 seconds
4.76837158203125e-06 seconds

可以看出第二种方法运行速度快了将近2倍.

字符串连接 VS join()

在Python中,字符串是不可变的,因此我们不能修改它们。
每次当我们连接多个字符串时,我们将会创建一个新的字符串,此时会导致一些运行性能问题。

一般版本:

new_list = []
word_list = ["I", "am", "a", "Python", "programmer"]
for word in word_list:
    new_list += word

改进版本:

word_list = ["I", "am", "a", "Python", "programmer"]
new_list = "".join(word_list)

时间对比:

import time

new_list = []
word_list = ["I", "am", "a", "Python", "programmer"]

start = time.time()
for word in word_list:
    new_list += word
print(time.time() - start, "seconds")

start = time.time()
new_list = "".join(word_list)
print(time.time() - start, "seconds")

运行结果:

4.0531158447265625e-06 seconds
9.5367431640625e-07 seconds

使用Join()函数可以让代码运行快4倍.

创建列表和字典的方式

一般来说,使用[]来创建列表和字典相比使用list()dict运行更加高效.这是因为使用list()dict来创建对象时需要调用一个附加函数.

一般版本:

list()
dict()

改进版本:

()

时间对比:
为了便于对比时间,这里我们使用timeit函数来统计,我们运行1百万次,来看二者的时间对比,代码如下:

import timeit

slower_list = timeit.timeit("list()", number=10**6)
slower_dict = timeit.timeit("dict()", number=10**6)

faster_list = timeit.timeit("[]", number=10**6)
faster_dict = timeit.timeit("", number=10**6)

print(slower_list, "seconds")
print(slower_dict, "seconds")
print(faster_list, "seconds")
print(faster_dict, "seconds")

运行结果:

0.08825178800000001 seconds
0.083323732 seconds
0.019935448999999994 seconds
0.027835573000000002 seconds

可以看出,我们的运行速度快了将近4倍.

使用 f-Strings

我们已经知道将字符串进行串联可能会使程序变慢。
另一个比较好的解决方案是使用f-Strings。

一般版本:

me = "Python"
string = "Make " + me + " faster"

改进版本:

me = "Python"
string = f"Make me faster"

时间对比:

import time
me = "Python"

start = time.time()
string = "Make " + me + " faster"
print(time.time() - start, "seconds")

start = time.time()
string = f"Make me faster"
print(time.time() - start, "seconds")

运行结果:

2.1457672119140625e-06 seconds
9.5367431640625e-07 seconds

可以看出,我们的运行速度快了将近2倍.

使用Comprehensions

Python中的List Comprehensions为我们提供了更短的语法,甚至只有一行代码来实现各种强大的功能。很多用到循环的场景下,我们尽量使用生成式的语法来实现.

一般版本:

new_list = []
existing_list = range(1000000)
for i in existing_list:
    if i % 2 == 1:
        new_list.append(i)

较快版本:

existing_list = range(1000000)
new_list = [i for i in existing_list if i % 2 == 1]

时间对比:

import time

new_list = []
existing_list = range(1000000)

start = time.time()
for i in existing_list:
    if i % 2 == 1:
        new_list.append(i)
print(time.time() - start, "seconds")

start = time.time()
new_list = [i for i in existing_list if i % 2 == 1]
print(time.time() - start, "seconds")

运行结果:

0.16418218612670898 seconds
0.07834219932556152 seconds

可以看出,我们的运行速度快了将近2倍.

附录- Python中的内置函数

我们可以通过官网来查看Python的内置函数.


如果我们只关注上述例子中一些短小的代码片段,这些技巧似乎没有太大的改善。 实际上,我们的项目很容易变得复杂,此时上述技巧就派上用场啦!

8. 总结

本文重点介绍了在Python中如何使用一些简单的Trick来提升代码运行效率,并给出了相应的代码示例。

您学废了吗?


技术交流

欢迎转载、收藏、有所收获点赞支持一下!

目前开通了技术交流群,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友

  • 方式①、发送如下图片至微信,长按识别,后台回复:加群;
  • 方式②、添加微信号:dkl88191,备注:来自CSDN
  • 方式③、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

以上是关于学废了嘛?提升 Python 代码运行速度的6个技巧真香啊的主要内容,如果未能解决你的问题,请参考以下文章

# yyds干货盘点 # Python列表中的深浅拷贝,你学废了嘛?

去除多重共线性的5种方法,你学废了嘛?

去除多重共线性的5种方法,你学废了嘛?

您学废了吗?Python 也可以这么优雅地创建表格

入门指南|redis-Sentinel(哨兵机制)你学废了么?

学废了!提高工作效率的五个步骤! | 每日趣闻