redis源码分析3---结构体---字典

Posted taoliu_alex

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了redis源码分析3---结构体---字典相关的知识,希望对你有一定的参考价值。

redis源码分析3---结构体---字典

字典,简单来说就是一种用于保存键值对的抽象数据结构;
注意,字典中每个键都是独一无二的;在redis中,内部的redis的数据库就是使用字典作为底层实现的;

 

 

1 字典的实现
     在redis中,字典是使用哈希表作为底层实现的,一个hash表里面可以有多个hash表节点,而每个hash表节点就保存了字典中的一个键值对;
 
hash表定义
table属性是一个数组,数组中的每个元素都是一个指向dictEntry结构的指针,每个dictEntry结构保存着一个键值对;
一个空的hash表:

hash表节点

key保存键值对中的键,v为值,union表示三个钟选择一个,next是指向另一个hash表节点的指针,这个指针可以将多个hash值相同的键值对连接在一起,以此来解决冲突的问题;

 

比如

字典结构

 

 

 

 总的来说,没有rehash的字节结构图如下

 

 

 

2 hash算法
当要将一个新的键值对添加到字典里面时,程序需要先根据键值对的键计算出hash值和索引值,然后再根据索引值,将包含新建支队的hash表节点放到哈市表数组的制定索引上面。

 

 

 

3 解决冲突
 
在hash表中不可避免的会出现冲突,当有两个或者两个以上的键被分配到了hash表数组的同一个索引上面时,就说发生了冲突;
 
在redis中使用链地址法来解决键冲突;就是我们在前面的结构中定义的next指针实现的;

 

 

 

 

4 rehash
 
在字典中,一个非常重要的特点就是使用了rehash的方法;
因为随着操作的不断执行,hash表保存的键值对会渐渐的增多或者减少,为了让hash表的敷在银子位置在一个合理的方位内,当hash表保存的键值对数量太多或者太少时,程序需要对hash的大小进行相应的扩展或者收缩。

 

 

 

 

扩展或收缩hash表的方式

 

 

 值得注意的是,在hash的扩展或者收缩的时候,并不是在某一时间内快速完成的,而是分多次,渐进的完成的。

 

 

 

 

 

补充说明一下:在渐进式rehash中的时候,字典的删除,查找,更新等操作会在两个hash表上进行。

 

 5 字典的API

 

 

 

 
6 源代码分析
 
6.1 字典迭代器

 

 

6.2 

 

// 释放给定字典节点的值
#define dictFreeVal(d, entry) \\
    if ((d)->type->valDestructor) \\
        (d)->type->valDestructor((d)->privdata, (entry)->v.val)

// 设置给定字典节点的值
#define dictSetVal(d, entry, _val_) do { \\
    if ((d)->type->valDup) \\
        entry->v.val = (d)->type->valDup((d)->privdata, _val_); \\
    else \\
        entry->v.val = (_val_); \\
} while(0)

// 将一个有符号整数设为节点的值
#define dictSetSignedIntegerVal(entry, _val_) \\
    do { entry->v.s64 = _val_; } while(0)

// 将一个无符号整数设为节点的值
#define dictSetUnsignedIntegerVal(entry, _val_) \\
    do { entry->v.u64 = _val_; } while(0)

// 释放给定字典节点的键
#define dictFreeKey(d, entry) \\
    if ((d)->type->keyDestructor) \\
        (d)->type->keyDestructor((d)->privdata, (entry)->key)

// 设置给定字典节点的键
#define dictSetKey(d, entry, _key_) do { \\
    if ((d)->type->keyDup) \\
        entry->key = (d)->type->keyDup((d)->privdata, _key_); \\
    else \\
        entry->key = (_key_); \\
} while(0)

// 比对两个键
#define dictCompareKeys(d, key1, key2) \\
    (((d)->type->keyCompare) ? \\
        (d)->type->keyCompare((d)->privdata, key1, key2) : \\
        (key1) == (key2))

// 计算给定键的哈希值
#define dictHashKey(d, key) (d)->type->hashFunction(key)
// 返回获取给定节点的键
#define dictGetKey(he) ((he)->key)
// 返回获取给定节点的值
#define dictGetVal(he) ((he)->v.val)
// 返回获取给定节点的有符号整数值
#define dictGetSignedIntegerVal(he) ((he)->v.s64)
// 返回给定节点的无符号整数值
#define dictGetUnsignedIntegerVal(he) ((he)->v.u64)
// 返回给定字典的大小
#define dictSlots(d) ((d)->ht[0].size+(d)->ht[1].size)
// 返回字典的已有节点数量
#define dictSize(d) ((d)->ht[0].used+(d)->ht[1].used)
// 查看字典是否正在 rehash
#define dictIsRehashing(ht) ((ht)->rehashidx != -1)

 

6.3 字典的添加和删除

 

/* Create a new hash table */
/*
 * 创建一个新的字典
 *
 * T = O(1)
 */
dict *dictCreate(dictType *type,
        void *privDataPtr)
{
    dict *d = zmalloc(sizeof(*d));

    _dictInit(d,type,privDataPtr);

    return d;
}

/* Initialize the hash table */
/*
 * 初始化哈希表
 *
 * T = O(1)
 */
int _dictInit(dict *d, dictType *type,
        void *privDataPtr)
{
    // 初始化两个哈希表的各项属性值
    // 但暂时还不分配内存给哈希表数组
    _dictReset(&d->ht[0]);
    _dictReset(&d->ht[1]);

    // 设置类型特定函数
    d->type = type;

    // 设置私有数据
    d->privdata = privDataPtr;

    // 设置哈希表 rehash 状态
    d->rehashidx = -1;

    // 设置字典的安全迭代器数量
    d->iterators = 0;

    return DICT_OK;
}

/* Resize the table to the minimal size that contains all the elements,
 * but with the invariant of a USED/BUCKETS ratio near to <= 1 */
/*
 * 缩小给定字典
 * 让它的已用节点数和字典大小之间的比率接近 1:1
 *
 * 返回 DICT_ERR 表示字典已经在 rehash ,或者 dict_can_resize 为假。
 *
 * 成功创建体积更小的 ht[1] ,可以开始 resize 时,返回 DICT_OK。
 *
 * T = O(N)
 */
int dictResize(dict *d)
{
    int minimal;

    // 不能在关闭 rehash 或者正在 rehash 的时候调用
    if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;

    // 计算让比率接近 1:1 所需要的最少节点数量
    minimal = d->ht[0].used;
    if (minimal < DICT_HT_INITIAL_SIZE)
        minimal = DICT_HT_INITIAL_SIZE;

    // 调整字典的大小
    // T = O(N)
    return dictExpand(d, minimal);
}

/* Expand or create the hash table */
/*
 * 创建一个新的哈希表,并根据字典的情况,选择以下其中一个动作来进行:
 *
 * 1) 如果字典的 0 号哈希表为空,那么将新哈希表设置为 0 号哈希表
 * 2) 如果字典的 0 号哈希表非空,那么将新哈希表设置为 1 号哈希表,
 *    并打开字典的 rehash 标识,使得程序可以开始对字典进行 rehash
 *
 * size 参数不够大,或者 rehash 已经在进行时,返回 DICT_ERR 。
 *
 * 成功创建 0 号哈希表,或者 1 号哈希表时,返回 DICT_OK 。
 *
 * T = O(N)
 */
int dictExpand(dict *d, unsigned long size)
{
    // 新哈希表
    dictht n; /* the new hash table */

    // 根据 size 参数,计算哈希表的大小
    // T = O(1)
    unsigned long realsize = _dictNextPower(size);

    /* the size is invalid if it is smaller than the number of
     * elements already inside the hash table */
    // 不能在字典正在 rehash 时进行
    // size 的值也不能小于 0 号哈希表的当前已使用节点
    if (dictIsRehashing(d) || d->ht[0].used > size)
        return DICT_ERR;

    /* Allocate the new hash table and initialize all pointers to NULL */
    // 为哈希表分配空间,并将所有指针指向 NULL
    n.size = realsize;
    n.sizemask = realsize-1;
    // T = O(N)
    n.table = zcalloc(realsize*sizeof(dictEntry*));
    n.used = 0;

    /* Is this the first initialization? If so it\'s not really a rehashing
     * we just set the first hash table so that it can accept keys. */
    // 如果 0 号哈希表为空,那么这是一次初始化:
    // 程序将新哈希表赋给 0 号哈希表的指针,然后字典就可以开始处理键值对了。
    if (d->ht[0].table == NULL) {
        d->ht[0] = n;
        return DICT_OK;
    }

    /* Prepare a second hash table for incremental rehashing */
    // 如果 0 号哈希表非空,那么这是一次 rehash :
    // 程序将新哈希表设置为 1 号哈希表,
    // 并将字典的 rehash 标识打开,让程序可以开始对字典进行 rehash
    d->ht[1] = n;
    d->rehashidx = 0;
    return DICT_OK;

    /* 顺带一提,上面的代码可以重构成以下形式:

    if (d->ht[0].table == NULL) {
        // 初始化
        d->ht[0] = n;
    } else {
        // rehash
        d->ht[1] = n;
        d->rehashidx = 0;
    }

    return DICT_OK;

    */
}

/* Performs N steps of incremental rehashing. Returns 1 if there are still
 * keys to move from the old to the new hash table, otherwise 0 is returned.
 *
 * 执行 N 步渐进式 rehash 。
 *
 * 返回 1 表示仍有键需要从 0 号哈希表移动到 1 号哈希表,
 * 返回 0 则表示所有键都已经迁移完毕。
 *
 * Note that a rehashing step consists in moving a bucket (that may have more
 * than one key as we use chaining) from the old to the new hash table.
 *
 * 注意,每步 rehash 都是以一个哈希表索引(桶)作为单位的,
 * 一个桶里可能会有多个节点,
 * 被 rehash 的桶里的所有节点都会被移动到新哈希表。
 *
 * T = O(N)
 */
int dictRehash(dict *d, int n) {

    // 只可以在 rehash 进行中时执行
    if (!dictIsRehashing(d)) return 0;

    // 进行 N 步迁移
    // T = O(N)
    while(n--) {
        dictEntry *de, *nextde;

        /* Check if we already rehashed the whole table... */
        // 如果 0 号哈希表为空,那么表示 rehash 执行完毕
        // T = O(1)
        if (d->ht[0].used == 0) {
            // 释放 0 号哈希表
            zfree(d->ht[0].table);
            // 将原来的 1 号哈希表设置为新的 0 号哈希表
            d->ht[0] = d->ht[1];
            // 重置旧的 1 号哈希表
            _dictReset(&d->ht[1]);
            // 关闭 rehash 标识
            d->rehashidx = -1;
            // 返回 0 ,向调用者表示 rehash 已经完成
            return 0;
        }

        /* Note that rehashidx can\'t overflow as we are sure there are more
         * elements because ht[0].used != 0 */
        // 确保 rehashidx 没有越界
        assert(d->ht[0].size > (unsigned)d->rehashidx);

        // 略过数组中为空的索引,找到下一个非空索引
        while(d->ht[0].table[d->rehashidx] == NULL) d->rehashidx++;

        // 指向该索引的链表表头节点
        de = d->ht[0].table[d->rehashidx];
        /* Move all the keys in this bucket from the old to the new hash HT */
        // 将链表中的所有节点迁移到新哈希表
        // T = O(1)
        while(de) {
            unsigned int h;

            // 保存下个节点的指针
            nextde = de->next;

            /* Get the index in the new hash table */
            // 计算新哈希表的哈希值,以及节点插入的索引位置
            h = dictHashKey(d, de->key) & d->ht[1].sizemask;

            // 插入节点到新哈希表
            de->next = d->ht[1].table[h];
            d->ht[1].table[h] = de;

            // 更新计数器
            d->ht[0].used--;
            d->ht[1].used++;

            // 继续处理下个节点
            de = nextde;
        }
        // 将刚迁移完的哈希表索引的指针设为空
        d->ht[0].table[d->rehashidx] = NULL;
        // 更新 rehash 索引
        d->rehashidx++;
    }

    return 1;
}

/*
 * 返回以毫秒为单位的 UNIX 时间戳
 *
 * T = O(1)
 */
long long timeInMilliseconds(void) {
    struct timeval tv;

    gettimeofday(&tv,NULL);
    return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
}

/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
/*
 * 在给定毫秒数内,以 100 步为单位,对字典进行 rehash 。
 *
 * T = O(N)
 */
int dictRehashMilliseconds(dict *d, int ms) {
    // 记录开始时间
    long long start = timeInMilliseconds();
    int rehashes = 0;

    while(dictRehash(d,100)) {
        rehashes += 100;
        // 如果时间已过,跳出
        if (timeInMilliseconds()-start > ms) break;
    }

    return rehashes;
}

/* This function performs just a step of rehashing, and only if there are
 * no safe iterators bound to our hash table. When we have iterators in the
 * middle of a rehashing we can\'t mess with the two hash tables otherwise
 * some element can be missed or duplicated.
 *
 * 在字典不存在安全迭代器的情况下,对字典进行单步 rehash 。
 *
 * 字典有安全迭代器的情况下不能进行 rehash ,
 * 因为两种不同的迭代和修改操作可能会弄乱字典。
 *
 * This function is called by common lookup or update operations in the
 * dictionary so that the hash table automatically migrates from H1 to H2
 * while it is actively used.
 *
 * 这个函数被多个通用的查找、更新操作调用,
 * 它可以让字典在被使用的同时进行 rehash 。
 *
 * T = O(1)
 */
static void _dictRehashStep(dict *d) {
    if (d->iterators == 0) dictRehash(d,1);
}

/* Add an element to the target hash table */
/*
 * 尝试将给定键值对添加到字典中
 *
 * 只有给定键 key 不存在于字典时,添加操作才会成功
 *
 * 添加成功返回 DICT_OK ,失败返回 DICT_ERR
 *
 * 最坏 T = O(N) ,平滩 O(1)
 */
int dictAdd(dict *d, void *key, void *val)
{
    // 尝试添加键到字典,并返回包含了这个键的新哈希节点
    // T = O(N)
    dictEntry *entry = dictAddRaw(d,key);

    // 键已存在,添加失败
    if (!entry) return DICT_ERR;

    // 键不存在,设置节点的值
    // T = O(1)
    dictSetVal(d, entry, val);

    // 添加成功
    return DICT_OK;
}

/* Low level add. This function adds the entry but instead of setting
 * a value returns the dictEntry structure to the user, that will make
 * sure to fill the value field as he wishes.
 *
 * This function is also directly exposed to user API to be called
 * mainly in order to store non-pointers inside the hash value, example:
 *
 * entry = dictAddRaw(dict,mykey);
 * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
 *
 * Return values:
 *
 * If key already exists NULL is returned.
 * If key was added, the hash entry is returned to be manipulated by the caller.
 */
/*
 * 尝试将键插入到字典中
 *
 * 如果键已经在字典存在,那么返回 NULL
 *
 * 如果键不存在,那么程序创建新的哈希节点,
 * 将节点和键关联,并插入到字典,然后返回节点本身。
 *
 * T = O(N)
 */
dictEntry *dictAddRaw(dict *d, void *key)
{
    int index;
    dictEntry *entry;
    dictht *ht;

    // 如果条件允许的话,进行单步 rehash
    // T = O(1)
    if (dictIsRehashing(d)) _dictRehashStep(d);

    /* Get the index of the new element, or -1 if
     * the element already exists. */
    // 计算键在哈希表中的索引值
    // 如果值为 -1 ,那么表示键已经存在
    // T = O(N)
    if ((index = _dictKeyIndex(d, key)) == -1)
        return NULL;

    // T = O(1)
    /* Allocate the memory and store the new entry */
    // 如果字典正在 rehash ,那么将新键添加到 1 号哈希表
    // 否则,将新键添加到 0 号哈希表
    ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
    // 为新节点分配空间
    entry = zmalloc(sizeof(*entry));
    // 将新节点插入到链表表头
    entry->next = ht->table[index];
    ht->table[index] = entry;
    // 更新哈希表已使用节点数量
    ht->used++;

    /* Set the hash entry fields. */
    // 设置新节点的键
    // T = O(1)
    dictSetKey(d, entry, key);

    return entry;
}

/* Add an element, discarding the old if the key already exists.
 *
 * 将给定的键值对添加到字典中,如果键已经存在,那么删除旧有的键值对。
 *
 * Return 1 if the key was added from scratch, 0 if there was already an
 * element with such key and dictReplace() just performed a value update
 * operation.
 *
 * 如果键值对为全新添加,那么返回 1 。
 * 如果键值对是通过对原有的键值对更新得来的,那么返回 0 。
 *
 * T = O(N)
 */
int dictReplace(dict *d, void *key, void *val)
{
    dictEntry *entry, auxentry;

    /* Try to add the element. If the key
     * does not exists dictAdd will suceed. */
    // 尝试直接将键值对添加到字典
    // 如果键 key 不存在的话,添加会成功
    // T = O(N)
    if (dictAdd(d, key, val) == DICT_OK)
        return 1;

    /* It already exists, get the entry */
    // 运行到这里,说明键 key 已经存在,那么找出包含这个 key 的节点
    // T = O(1)
    entry = dictFind(d, key);
    /* Set the new value and free the old one. Note that it is important
     * to do that in this order, as the value may just be exactly the same
     * as the previous one. In this context, think to reference counting,
     * you want to increment (set), and then decrement (free), and not the
     * reverse. */
    // 先保存原有的值的指针
    auxentry = *entry;
    // 然后设置新的值
    // T = O(1)
    dictSetVal(d, entry, val);
    // 然后释放旧值
    // T = O(1)
    dictFreeVal(d, &auxentry);

    return 0;
}

/* dictReplaceRaw() is simply a version of dictAddRaw() that always
 * returns the hash entry of the specified key, even if the key already
 * exists and can\'t be added (in that case the entry of the already
 * existing key is returned.)
 *
 * See dictAddRaw() for more information. */
/*
 * dictAddRaw() 根据给定 key 释放存在,执行以下动作:
 *
 * 1) key 已经存在,返回包含该 key 的字典节点
 * 2) key 不存在,那么将 key 添加到字典
 *
 * 不论发生以上的哪一种情况,
 * dictAddRaw() 都总是返回包含给定 key 的字典节点。
 *
 * T = O(N)
 */
dictEntry *dictReplaceRaw(dict *d, void *key) {

    // 使用 key 在字典中查找节点
    // T = O(1)
    dictEntry *entry = dictFind(d,key);

    // 如果节点找到了直接返回节点,否则添加并返回一个新节点
    // T = O(N)
    return entry ? entry : dictAddRaw(d,key);
}

/* Search and remove an element */
/*
 * 查找并删除包含给定键的节点
 *
 * 参数 nofree 决定是否调用键和值的释放函数
 * 0 表示调用,1 表示不调用
 *
 * 找到并成功删除返回 DICT_OK ,没找到则返回 DICT_ERR
 *
 * T = O(1)
 */
static int dictGenericDelete(dict *d, const void *key, int nofree)
{
    unsigned int h, idx;
    dictEntry *he, *prevHe;
    int table;

    // 字典(的哈希表)为空
    if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */

    // 进行单步 rehash ,T = O(1)
    if (dictIsRehashing(d)) _dictRehashStep(d);

    // 计算哈希值
    h = dictHashKey(d, key);

    // 遍历哈希表
    // T = O(1)
    for (table = 0; table <= 1; table++) {

        // 计算索引值
        idx = h & d->ht[table].sizemask;
        // 指向该索引上的链表
        he = d->ht[table].table[idx];
        prevHe = NULL;
        // 遍历链表上的所有节点
        // T = O(1)
        while(he) {

            if (dictCompareKeys(d, key, he->key)) {
                // 超找目标节点

                /* Unlink the element from the list */
                // 从链表中删除
                if (prevHe)
                    prevHe->next = he->next;
                else
                    d->ht[table].table[idx] = he->next;

                // 释放调用键和值的释放函数?
                if (!nofree) {
                    dictFreeKey(d, he);
                    dictFreeVal(d, he);
                }

                // 释放节点本身
                zfree(he);

                // 更新已使用节点数量
                d->ht[table].used--;

                // 返回已找到信号
                return DICT_OK;
            }

            prevHe = he;
            he = he->next;
        }

        // 如果执行到这里,说明在 0 号哈希表中找不到给定键
        // 那么根据字典是否正在进行 rehash ,决定要不要查找 1 号哈希表
        if (!dictIsRehashing(d)) break;
    }

    // 没找到
    return DICT_ERR; /* not found */
}

/*
 * 从字典中删除包含给定键的节点
 *
 * 并且调用键值的释放函数来删除键值
 *
 * 找到并成功删除返回 DICT_OK ,没找到则返回 DICT_ERR
 * T = O(1)
 */
int dictDelete(dict *ht, const void *key) {
    return dictGenericDelete(ht,key,0);
}

/*
 * 从字典中删除包含给定键的节点
 *
 * 但不调用键值的释放函数来删除键值
 *
 * 找到并成功删除返回 DICT_OK ,没找到则返回 DICT_ERR
 * T = O(1)
 */
int dictDeleteNoFree(dict *ht, const void *key) {
    return dictGenericDelete(ht,key,1);
}

/* Destroy an entire dictionary */
/*
 * 删除哈希表上的所有节点,并重置哈希表的各项属性
 *
 * T = O(N)
 */
int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
    unsigned long i;

    /* Free all the elements */
    // 遍历整个哈希表
    // T = O(N)
    for (i = 0; i < ht->size && ht->used > 0; i++) {
        dictEntry *he, *nextHe;

        if (callback && (i & 65535) == 0) callback(d->privdata);

        // 跳过空索引
        if ((he = ht->table[i]) == NULL) continue;

        // 遍历整个链表
        // T = O(1)
        while(he) {
            nextHe = he->next;
            // 删除键
            dictFreeKey(d, he);
            // 删除值
            dictFreeVal(d, he);
            // 释放节点
            zfree(he);

            // 更新已使用节点计数
            ht->used--;

            // 处理下个节点
            he = nextHe;
        }
    }

    /* Free the table and the allocated cache structure */
    // 释放哈希表结构
    zfree(ht->table);

    /* Re-initialize the table */
    // 重置哈希表属性
    _dictReset(ht);

    return DICT_OK; /* never fails */
}

/* Clear & Release the hash table */
/*
 * 删除并释放整个字典
 *
 * T = O(N)
 */
void dictRelease(dict *d)
{
    // 删除并清空两个哈希表
    _dictClear(d,&d->ht[0],NULL);
    _dictClear(d,&d->ht[1],NULL);
    // 释放节点结构
    zfree(d);
}

 

 

6.4 字典查找和访问

/*
 * 返回字典中包含键 key 的节点
 *
 * 找到返回节点,找不到返回 NULL
 *
 * T = O(1)
 */
dictEntry *dictFind(dict *d, const void *key)
{
    dictEntry *he;
    unsigned int h, idx, table;

    // 字典(的哈希表)为空
    if (d->ht[0].size == 0) return NULL; /* We don\'t have a table at all */

    // 如果条件允许的话,进行单步 rehash
    if (dictIsRehashing(d)) _dictRehashStep(d);

    // 计算键的哈希值
    h = dictHashKey(d, key);
    // 在字典的哈希表中查找这个键
    // T = O(1)
    for (table = 0; table <= 1; table++) {

        //

以上是关于redis源码分析3---结构体---字典的主要内容,如果未能解决你的问题,请参考以下文章

redis源码分析4---结构体---跳跃表

redis源码分析-- 基本数据结构字典dict

redis源码分析-- 基本数据结构字典dict

redis学习记录:字典(dict)源码分析

redis学习记录:字典(dict)源码分析

redis学习记录:字典(dict)源码分析