“步骤1的计数器:没有计数器发现”使用Hadoop和mrjob
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了“步骤1的计数器:没有计数器发现”使用Hadoop和mrjob相关的知识,希望对你有一定的参考价值。
我有一个python文件在Hadoop(版本2.6.0)上使用mrjob来计算bigrams,但是我没有得到我希望的输出,而且我在我的终端中解密输出时遇到了问题。我错了。
我的代码:
regex_for_words = re.compile(r"[w']+")
class BiCo(MRJob):
OUTPUT_PROTOCOL = mrjob.protocol.RawProtocol
def mapper(self, _, line):
words = regex_for_words.findall(line)
wordsinline = list()
for word in words:
wordsinline.append(word.lower())
wordscounter = 0
totalwords = len(wordsinline)
for word in wordsinline:
if wordscounter < (totalwords - 1):
nextword_pos = wordscounter+1
nextword = wordsinline[nextword_pos]
bigram = word, nextword
wordscounter +=1
yield (bigram, 1)
def combiner(self, bigram, counts):
yield (bigram, sum(counts))
def reducer(self, bigram, counts):
yield (bigram, str(sum(counts)))
if __name__ == '__main__':
BiCo.run()
我在我的本地机器上的mapper函数中编写了代码(基本上,通过“yield”行的所有内容)以确保我的代码按照预期抓住了bigrams,所以我认为它应该工作得很好....但是,事情,有些事情发生了变化。
当我在Hadoop服务器上运行代码时,我得到以下输出(如果超过必要的话,道歉 - 屏幕输出大量信息,我还不确定在问题区域进行珩磨会有什么帮助):
HADOOP: 2015-10-25 17:00:46,992 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1355)) - Running job: job_1438612881113_6410
HADOOP: 2015-10-25 17:00:52,110 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1376)) - Job job_1438612881113_6410 running in uber mode : false
HADOOP: 2015-10-25 17:00:52,111 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1383)) - map 0% reduce 0%
HADOOP: 2015-10-25 17:00:58,171 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1383)) - map 33% reduce 0%
HADOOP: 2015-10-25 17:01:00,184 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1383)) - map 100% reduce 0%
HADOOP: 2015-10-25 17:01:07,222 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1383)) - map 100% reduce 100%
HADOOP: 2015-10-25 17:01:08,239 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1394)) - Job job_1438612881113_6410 completed successfully
HADOOP: 2015-10-25 17:01:08,321 INFO [main] mapreduce.Job (Job.java:monitorAndPrintJob(1401)) - Counters: 51
HADOOP: File System Counters
HADOOP: FILE: Number of bytes read=2007840
HADOOP: FILE: Number of bytes written=4485245
HADOOP: FILE: Number of read operations=0
HADOOP: FILE: Number of large read operations=0
HADOOP: FILE: Number of write operations=0
HADOOP: HDFS: Number of bytes read=1013129
HADOOP: HDFS: Number of bytes written=0
HADOOP: HDFS: Number of read operations=12
HADOOP: HDFS: Number of large read operations=0
HADOOP: HDFS: Number of write operations=2
HADOOP: Job Counters
HADOOP: Killed map tasks=1
HADOOP: Launched map tasks=4
HADOOP: Launched reduce tasks=1
HADOOP: Rack-local map tasks=4
HADOOP: Total time spent by all maps in occupied slots (ms)=33282
HADOOP: Total time spent by all reduces in occupied slots (ms)=12358
HADOOP: Total time spent by all map tasks (ms)=16641
HADOOP: Total time spent by all reduce tasks (ms)=6179
HADOOP: Total vcore-seconds taken by all map tasks=16641
HADOOP: Total vcore-seconds taken by all reduce tasks=6179
HADOOP: Total megabyte-seconds taken by all map tasks=51121152
HADOOP: Total megabyte-seconds taken by all reduce tasks=18981888
HADOOP: Map-Reduce Framework
HADOOP: Map input records=28214
HADOOP: Map output records=133627
HADOOP: Map output bytes=2613219
HADOOP: Map output materialized bytes=2007852
HADOOP: Input split bytes=304
HADOOP: Combine input records=133627
HADOOP: Combine output records=90382
HADOOP: Reduce input groups=79518
HADOOP: Reduce shuffle bytes=2007852
HADOOP: Reduce input records=90382
HADOOP: Reduce output records=0
HADOOP: Spilled Records=180764
HADOOP: Shuffled Maps =3
HADOOP: Failed Shuffles=0
HADOOP: Merged Map outputs=3
HADOOP: GC time elapsed (ms)=93
HADOOP: CPU time spent (ms)=7940
HADOOP: Physical memory (bytes) snapshot=1343377408
HADOOP: Virtual memory (bytes) snapshot=14458105856
HADOOP: Total committed heap usage (bytes)=4045406208
HADOOP: Shuffle Errors
HADOOP: BAD_ID=0
HADOOP: CONNECTION=0
HADOOP: IO_ERROR=0
HADOOP: WRONG_LENGTH=0
HADOOP: WRONG_MAP=0
HADOOP: WRONG_REDUCE=0
HADOOP: Unencodable output
HADOOP: TypeError=79518
HADOOP: File Input Format Counters
HADOOP: Bytes Read=1012825
HADOOP: File Output Format Counters
HADOOP: Bytes Written=0
HADOOP: 2015-10-25 17:01:08,321 INFO [main] streaming.StreamJob (StreamJob.java:submitAndMonitorJob(1022)) - Output directory: hdfs:///user/andersaa/si601f15lab5_output
Counters from step 1:
(no counters found)
我对于为什么在步骤1中找不到计数器感到困惑(我假设它是我的代码的映射器部分,这可能是一个错误的假设)。如果我正确地读取任何Hadoop输出,看起来它至少使它成为reduce阶段(因为有Reduce Input组)并且它没有找到任何Shuffling错误。我认为在“Unencodable输出:TypeError = 79518”中可能会出现一些问题的答案,但是我所做的谷歌搜索量没有帮助我了解这是什么错误。
非常感谢任何帮助或见解。
一个问题是映射器的二元组的编码。上面编码的方式,bigram是python类型“元组”:
>>> word = 'the'
>>> word2 = 'boy'
>>> bigram = word, word2
>>> type(bigram)
<type 'tuple'>
通常,普通字符串用作键。因此,将字符串创建为字符串。你可以这样做的一种方法是:
bigram = '-'.join((word, nextword))
当我在程序中进行更改时,我会看到如下输出:
automatic-translation 1
automatic-vs 1
automatically-focus 1
automatically-learn 1
automatically-learning 1
automatically-translate 1
available-including 1
available-without 1
另一个提示:在命令行上尝试使用-q
来消除所有hadoop中间噪音。有时它只是妨碍了。
HTH。
这是缓存错误。我大部分都是用Hortonworks沙箱发现的。简单的解决方案是从沙箱和ssh再次注销。
以上是关于“步骤1的计数器:没有计数器发现”使用Hadoop和mrjob的主要内容,如果未能解决你的问题,请参考以下文章
安装 hadoop 3.1.2 警告:HADOOP_PREFIX 已被 HADOOP_HOME 取代。使用 HADOOP_PREFIX 的值