Mysql知识点整理

Posted zdcsmart

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Mysql知识点整理相关的知识,希望对你有一定的参考价值。

索引相关

索引类型

主键索引:数据列不允许重复,不允许为NULL。一个表只能有一个主键索引。InnoDB的主键索引为聚簇索引,而MyISAM的主键索引为非聚簇索引。
创建:ALTER TABLE table_name ADD PRIMARY KEY (column);

唯一索引:数据列不允许重复,允许为NULL,一个表中允许创建多个唯一索引。唯一索引可以用作业务防重。
创建:ALTER TABLE table_name ADD UNIQUE (column1, column2);

普通索引:基本的索引类型,没有唯一性的限制,允许为NULL值。
创建:ALTER TABLE table_name ADD KEY (column1, column2)

全文索引:是目前搜索引擎使用的一种关键技术,InnoDB不支持全文索引,MyISAM支持全文索引。
创建:ALTER TABLE table_name ADD FULLTEXT (column);

最左前缀原则

联合索引从左边的列到右边的列依次匹配,联合索引的最左前缀原则如下:
对于联合索引:index(co1, col2, col3)

  1. where col1=1where col1=1 and col2=2where col1=1 and col2=2 and col3=3都会走这个索引。第一个语句使用 col1,第二个语句使用 col1,col2,第三个使用 col1,col2,col3;
  2. where col2=2where col2=2 and col3=3不会走索引;
  3. where col3=3 and col2=2 and col1=1未经查询优化的话不会走索引,但是经过查询优化后会走索引...;
  4. where col1=1 and col3=3 仅使用 col1;
  5. where col1=1 and col2>2 and col3=3 仅使用 col1,col2;
  6. where col1=1 and col2 like ‘xx%‘ 使用 col1,col2;
  7. where col1=1 and col2 like ‘%xx‘‘ 仅使用 col1。

索引算法(B-Tree 和 HASH)

B-Tree索引

B-Tree索引是一棵多路查找平衡树,InnoDB 和 MyISAM 存储引擎都支持 B-Tree 索引。InnoDB 支持聚簇索引,InnoDB 默认会为主键创建聚簇索引,聚簇索引的非叶子节点不保存数据,只有叶子节点会保存数据,聚簇索引的叶子节点还会保存相邻的后一个节点的指针。非聚簇索引叶子节点不保存数据,只保存主键索引。

HASH索引

Hash 索引检索效率高,只需要一次定位,不像 B-Tree 索引需要从根节点到叶子节点,最后才能访问到页节点这样多次的IO访问。
Hash索引虽然检索效率高,但是也有很多的不足之处:

  1. Hash 索引仅仅能满足”=”,”IN”和”<=>”查询,不能使用范围查询。
    由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的 Hash 算法处理之后的 Hash 值的大小关系,并不能保证和Hash运算前完全一样。

  2. Hash 索引无法被用来避免数据的排序操作。
    由于 Hash 索引中存放的是经过 Hash 计算之后的 Hash 值,而且 Hash 值的大小关系并不一定和 Hash 运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算;

  3. Hash 索引不能利用部分索引键查询。
    对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。

  4. Hash 索引在任何时候都不能避免表扫描。
    前面已经知道,Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。

  5. Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。
    对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下。

B-Tree vs. HASH索引

索引名HASHB-Tree
是否支持最左前缀匹配原则 不支持,只有索引的全部字段都用上才会匹配到 支持,用上索引的第一个字段就可以匹配索引
MyISAM和InnoDB是否支持 不支持(只有Memory和NDB引擎索引支持) 支持
范围查询能否命中索引 不可以,只有“=”,“IN”,“<=>”(等价于的意思)查询能命中 可以
是否一定会全表扫描

索引设计原则

  1. 为经常需要排序、分组和联合的字段建立索引
  2. 为经常作为 where 条件查询的字段建立索引
  3. 在选择性好的列上建立索引,所谓选择性好是指筛选出来的数据少,例如性别的选择性就比较差,而姓名的选择性就高
  4. 联合索引需要注意索引的顺序,将选择性高的放在前面
  5. 索引虽然能加快查询,但是索引也是有代价的,首先索引会占用存储空间。其次索引的维护也是有消耗的。因此,索引不是越多越好。

数据类型

数字类型

整数: tinyint、smallint、mediumint、int、bigint

typeStorageMinumun ValueMaximum Value
(Bytes) (Signed/Unsigned) (Signed/Unsigned)
TINYINT 1 -128 127
    0 255
SMALLINT 2 -32768 32767
    0 65535
MEDIUMINT 3 -8388608 8388607
    0 16777215
INT 4 -2147483648 2147483647
    0 4294967295
BIGINT 8 -9223372036854775808 9223372036854775807
    0 18446744073709551615

浮点数: float、double、real、decimal

属性存储空间精度精确性说明
FLOAT(M, D) 4 bytes 单精度 非精确 单精度浮点型,m总个数,d小数位
DOUBLE(M, D) 8 bytes 双精度 比Float精度高 双精度浮点型,m总个数,d小数位

FLOAT容易造成精度丢失

定点数DECIMAL

  1. 高精度的数据类型,常用来存储交易相关的数据
  2. DECIMAL(M,N).M代表总精度,N代表小数点右侧的位数(标度)1 < M < 254, 0 < N < 60;
  3. 存储空间变长

日期和时间

date、time、datetime、timestamp、year

类型字节精确性
DATE 三字节 2015-05-01 精确到年月日
TIME 三字节 11:12:00 精确到时分秒
DATETIME 八字节 2015-05-01 11::12:00 精确到年月日时分秒
TIMESTAMP   2015-05-01 11::12:00 精确到年月日时分秒
  • mysql5.6.4版本之后,TIMESTAMPDATETIME支持到微秒。
  • TIMESTAMP会根据系统时区进行转换,DATETIME则不会
  • 存储范围的区别
    • TIMESTAMP存储范围:1970-01-01 00::00:01 to 2038-01-19 03:14:07
    • DATETIME的存储范围:1000-01-01 00:00:00 to 9999-12-31 23:59:59
  • 一般使用TIMESTAMP国际化
  • 如存时间戳使用数字类型BIGINT

字符串类型

字符串: char、varchar
文本: tinytext、text、mediumtext、longtext

类型单位最大特性
CHAR 字符 最大为255字符 存储定长,容易造成空间的浪费
VARCHAR 字符 可以超过255个字符 存储变长,节省存储空间
TEXT 字节 总大小为65535字节,约为64KB -
  • TEXT在MySQL内部大多存储格式为溢出页,效率不如CHAR
  • Mysql默认为utf-8,那么在英文模式下1个字符=1个字节,在中文模式下1个字符=3个字节。

二进制(可用来存储图片、音乐等)

tinyblob、blob、mediumblob、longblob

InnoDB和MyISAM的区别

  • InnoDB支持事务,MyISAM不支持。
  • MyISAM适合查询以及插入为主的应用,InnoDB适合频繁修改以及涉及到安全性较高的应用。
  • InnoDB支持外键,MyISAM不支持。
  • 从MySQL5.5.5以后,InnoDB是默认引擎。
  • InnoDB不支持FULLTEXT类型的索引。
  • InnoDB中不保存表的行数,如select count() from table时,InnoDB需要扫描一遍整个表来计算有多少行,但是MyISAM只要简单的读出保存好的行数即可。主要的是,当count()语句包含where条件时MyISAM也需要扫描整个表。
  • 对于自增长的字段,InnoDB中必须包含只有该字段的索引,但是在MyISAM表中可以和其他字段一起建立联合索引。
  • 清空整个表时,InnoDB是一行一行的删除,效率非常慢。MyISAM则会重建表。
  • InnoDB支持行锁(某些情况下还是会锁整个表,如update table set a = 1 where user like ‘%lee%‘)

MVCC

MVCC的实现,是通过保存数据在某个时间点的快照来实现的,根据事务开始时间的不同,每个事务对于同一张表,同一时刻看到的数据可能是不同的。

InnoDB的 MVCC ,是通过在每行记录的后面保存两个隐藏的列来实现的。这两个列,一个保存了行的创建时间,一个保存了行的过期时间(或删除时间), 当然存储的并不是实际的时间值,而是系统版本号。

可以认为MVCC是行级锁的一个变种,但是它在很多情况下避免了加锁操作,因此开销更低。虽然实现机制有所不同,但大都实现了非阻塞的读操作,写操作也只锁定必要的行。

在MVCC协议下,每个读操作会看到一个一致性的 snapshot,并且可以实现非阻塞的读。MVCC 允许数据具有多个版本,这个版本可以是时间戳或者是全局递增的事务 ID,在同一个时间点,不同的事务看到的数据是不同的。

  • select:满足以下两个条件innodb会返回该行数据:(1)该行的创建版本号小于等于当前版本号,用于保证在select操作之前所有的操作已经执行落地。(2)该行的删除版本号大于当前版本或者为空。删除版本号大于当前版本意味着有一个并发事务将该行删除了。
  • insert:将新插入的行的创建版本号设置为当前系统的版本号。
  • delete:将要删除的行的删除版本号设置为当前系统的版本号。
  • update:不执行原地update,而是转换成insert + delete。将旧行的删除版本号设置为当前版本号,并将新行insert同时设置创建版本号为当前版本号。

其中,写操作(insert、delete和update)执行时,需要将系统版本号递增。
由于旧数据并不真正的删除,所以必须对这些数据进行清理,innodb会开启一个后台线程执行清理工作,具体的规则是将删除版本号小于当前系统版本的行删除,这个过程叫做purge。
通过MVCC很好的实现了事务的隔离性,可以达到repeated read级别,要实现serializable还必须加锁。

MVCC只在READ COMMITED 和 REPEATABLE READ 两个隔离级别下工作。READ UNCOMMITTED总是读取最新的数据行,而不是符合当前事务版本的数据行。而SERIALIZABLE 则会对所有读取的行都加锁。

InnoDB间隙锁

Record lock

单条索引记录上加锁,InnoDB 的行锁是通过索引实现的,如没有索引,则锁住的不是记录行而是整个表。

Gap lock

间隙锁,锁定一个范围,但不包括记录本身。GAP锁的目的,是为了防止同一事务的两次当前读,出现幻读的情况。

Next-key lock

Next-key lock 就是 Record lock + Gap lock 的组合,它锁定的是一个范围,并且锁定记录本身。对于行的查询,都是采用该方法,主要目的是解决幻读的问题。

间隙锁(Next-key lock)的条件

mysql的事务隔离级别是可重复读(RR,Repeatable Read),并且 innodb_locks_unsafe_for_binlog 参数设置为0

事务ACID

  1. 原子性(Atomicity):不可分割的操作单元,事务中所有操作,要么全部成功;要么撤回到执行事务之前的状态
  2. 一致性(Consistency):如果在执行事务之前数据库是一致的,那么在执行事务之后数据库也还是一致的;
  3. 隔离性(Isolation):事务操作之间彼此独立和透明互不影响。事务独立运行。这通常使用锁来实现。一个事务处理后的结果,影响了其他事务,那么其他事务会撤回。事务的100%隔离,需要牺牲速度。
  4. 持久性(Durability):事务一旦提交,其结果就是永久的。即便发生系统故障,也能恢复。

delete drop truncate区别

truncate 和 delete只删除数据,不删除表结构 ,drop删除表结构,并且释放所占的空间。

删除数据的速度,一般来说: drop> truncate > delete

delete属于DML语言,需要事务管理,commit之后才能生效。drop和truncate属于DDL语言,操作立刻生效,不可回滚

使用场合:

  • 当你不再需要该表时,用 drop;
  • 当你仍要保留该表,但要删除所有记录时, 用 truncate;
  • 当你要删除部分记录时(always with a where clause), 用 delete.

Mysql explain

explain 用于查看 SQL 语句执行计划,其结果主要包含以下几个重要参数:id、select_type、table、type、possible_keys、key、key_len、ref、rows、Extra,下面对这些字段出现的可能进行解释。

select_type

表示查询中每个select子句的类型

  • SIMPLE(简单SELECT,不使用UNION或子查询等)
  • PRIMARY(查询中若包含任何复杂的子部分,最外层的select被标记为PRIMARY)
  • UNION(UNION中的第二个或后面的SELECT语句)
  • DEPENDENT UNION(UNION中的第二个或后面的SELECT语句,取决于外面的查询)
  • UNION RESULT(UNION的结果)
  • SUBQUERY(子查询中的第一个SELECT)
  • DEPENDENT SUBQUERY(子查询中的第一个SELECT,取决于外面的查询)
  • DERIVED(派生表的SELECT, FROM子句的子查询)
  • UNCACHEABLE SUBQUERY(一个子查询的结果不能被缓存,必须重新评估外链接的第一行)

type

表示MySQL在表中找到所需行的方式,又称“访问类型”。

常用的类型有: ALL, index, range, ref, eq_ref, const, system, NULL(从左到右,性能从差到好)

  • ALL:Full Table Scan, MySQL将遍历全表以找到匹配的行
  • index: Full Index Scan,index与ALL区别为index类型只遍历索引树
  • range:只检索给定范围的行,使用一个索引来选择行
  • ref: 表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值
  • eq_ref: 类似ref,区别就在使用的索引是唯一索引,对于每个索引键值,表中只有一条记录匹配,简单来说,就是多表连接中使用primary key或者 unique key作为关联条件
  • const、system: 当MySQL对查询某部分进行优化,并转换为一个常量时,使用这些类型访问。如将主键置于where列表中,MySQL就能将该查询转换为一个常量,system是const类型的特例,当查询的表只有一行的情况下,使用system
  • NULL: MySQL在优化过程中分解语句,执行时甚至不用访问表或索引,例如从一个索引列里选取最小值可以通过单独索引查找完成。

possible_keys

指出MySQL能使用哪个索引在表中找到记录,查询涉及到的字段上若存在索引,则该索引将被列出,但不一定被查询使用
该列完全独立于EXPLAIN输出所示的表的次序。这意味着在possible_keys中的某些键实际上不能按生成的表次序使用。
如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查WHERE子句看是否它引用某些列或适合索引的列来提高你的查询性能。如果是这样,创造一个适当的索引并且再次用EXPLAIN检查查询

Key

key列显示MySQL实际决定使用的键(索引)
如果没有选择索引,键是NULL。要想强制MySQL使用或忽视possible_keys列中的索引,在查询中使用FORCE INDEX、USE INDEX或者IGNORE INDEX。

explain 总结

  • EXPLAIN不会告诉你关于触发器、存储过程的信息或用户自定义函数对查询的影响情况
  • EXPLAIN不考虑各种Cache
  • EXPLAIN不能显示MySQL在执行查询时所作的优化工作
  • 部分统计信息是估算的,并非精确值
  • EXPALIN只能解释SELECT操作,其他操作要重写为SELECT后查看执行计划。

 

以上是关于Mysql知识点整理的主要内容,如果未能解决你的问题,请参考以下文章

mysql 基础知识整理

VS2015 代码片段整理

小程序各种功能代码片段整理---持续更新

常用python日期日志获取内容循环的代码片段

MySQL知识点整理

Mysql知识盲区整理