Mysql优化

Posted 反光的小鱼儿

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Mysql优化相关的知识,希望对你有一定的参考价值。

优化MySQL

mysql优化要点

慢查询 Explain

mysql慢查询

注意事项

SELECT语句务必指明字段名称

SELECT *增加很多不必要的消耗(cpu、io、内存、网络带宽);增加了使用覆盖索引的可能性;当表结构发生改变时,前断也需要更新。所以要求直接在select后面接上字段名。

对搜索的字段建立索引

一般说来,索引应建立在那些将用于JOIN,WHERE判断和ORDERBY排序的字段上。尽量不要对数据库中某个含有大量重复的值的字段建立索引。

当只需要一条数据的时候,使用limit 1

这是为了使EXPLAIN中type列达到const类型

对于联合索引来说,要遵守最左前缀法则

举列来说索引含有字段id,name,school,可以直接用id字段,也可以id,name这样的顺序,但是name,school都无法使用这个索引。所以在创建联合索引的时候一定要注意索引字段顺序,常用的查询字段放在最前面。

对于联合索引来说,如果存在范围查询,比如between,>,<等条件时,会造成后面的索引字段失效。

当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。

字段尽量不用NOT NULL

除非你有一个很特别的原因去使用 NULL 值,你应该总是让你的字段保持 NOT NULL。

不要以为 NULL 不需要空间,其需要额外的空间,并且,在你进行比较的时候,你的程序会更复杂。 当然,这里并不是说你就不能使用NULL了,现实情况是很复杂的,依然会有些情况下,你需要使用NULL值。 

尽量使用inner join,避免left join

参与联合查询的表至少为2张表,一般都存在大小之分。如果连接方式是inner join,在没有其他过滤条件的情况下MySQL会自动选择小表作为驱动表,但是left join在驱动表的选择上遵循的是左边驱动右边的原则,即left join左边的表名为驱动表。

如果限制条件中有字段没有索引,尽量少用or

如果or前后的限制条件都有独立索引,mysql会优化为type=index_merge(type是索引类型,explain)。但是有1个没有索引,那就退化为全表扫描。

很多时候使用 union all 或者是union(必要的时候)或者in的方式来代替“or”会得到更好的效果。

IN包含的值不要过多

MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:select id from table_name where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了;再或者使用连接来替换。

 IN EXIST选择

select * from 表A where id in (select id from 表B)
相当于
select
* from 表A where exists (select * from 表B where 表B.id=表A.id)

区分in和exists主要是造成了驱动顺序的改变(这是性能变化的关键),如果是exists,那么以外层表为驱动表,先被访问,如果是IN,那么先执行子查询。所以IN适合于外表大而内表小的情况;EXISTS适合于外表小而内表大的情况

关于not in和not exists,推荐使用not exists,不仅仅是效率问题,not in可能存在逻辑问题。如何高效的写出一个替代not exists的sql语句?

原sql语句
select colname … from A表 where a.id not in (select b.id from B表)

高效的sql语句
select colname … from A表 Left join B表 on where a.id = b.id where b.id is null

取出的结果集如下图表示,A表不在B表中的数据

尽量用union all代替union

Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;

Union All:对两个结果集进行并集操作,包括重复行,不进行排序;

union和union all的差异主要是前者需要将结果集合并后再进行唯一性过滤操作,这就会涉及到排序,增加大量的CPU运算,加大资源消耗及延迟。当然,union all的前提条件是两个结果集没有重复数据。

避免在where 子句中对字段进行 null 值判断

对于null的判断会导致引擎放弃使用索引而进行全表扫描。

避免在where子句中对字段进行表达式操作

select user_id,user_project from table_name where age*2=36;

对字段就行了算术运算,这会造成引擎放弃使用索引,建议改成

select user_id,user_project from table_name where age=36/2;

不建议使用%前缀模糊查询

例如LIKE “%name”或者LIKE “%name%”,这种查询会导致索引失效而进行全表扫描。但是可以使用LIKE “name%”。

那如何查询%name%?

那么如何解决这个问题呢,答案:使用全文索引。

在我们查询中经常会用到select id,fnum,fdst from table_name where user_name like \'%zhangsan%\';。这样的语句,普通索引是无法满足查询需求的。庆幸的是在MySQL中,有全文索引来帮助我们。

创建全文索引的sql语法是:

ALTER TABLE `table_name` ADD   FULLTEXT INDEX   `idx_user_name` (`user_name`);

使用全文索引的sql语句是:

select id,fnum,fdst from table_name where match(user_name) against(\'zhangsan\' in boolean mode);

注意:在需要创建全文索引之前,请联系DBA确定能否创建。同时需要注意的是查询语句的写法与普通索引的区别

分段查询

在一些用户选择页面中,可能一些用户选择的时间范围过大,造成查询缓慢。主要的原因是扫描行数过多。这个时候可以通过程序,分段进行查询,循环遍历,将结果合并处理进行展示。

mysql缓存(Query Cache)适合只读表

举个例子,如果数据表posts访问频繁,那么意味着它的很多数据会被QC缓存起来,但是每一次posts数据表的更新,无论更新是不是影响到了cache的数据,都会将全部和posts表相关的cache清除。如果你的数据表更新频繁的话,那么Query Cache将会成为系统的负担。

以上是关于Mysql优化的主要内容,如果未能解决你的问题,请参考以下文章

如何优化C ++代码的以下片段 - 卷中的零交叉

从JVM的角度看JAVA代码--代码优化

部分代码片段

Android 逆向整体加固脱壳 ( DEX 优化流程分析 | DexPrepare.cpp 中 dvmOptimizeDexFile() 方法分析 | /bin/dexopt 源码分析 )(代码片段

linux中怎么查看mysql数据库版本

从mysql的片段中加载ListView