spark记录(13)SparkSQL
Posted kpsmile
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了spark记录(13)SparkSQL相关的知识,希望对你有一定的参考价值。
1.Shark
Shark是基于Spark计算框架之上且兼容Hive语法的SQL执行引擎,由于底层的计算采用了Spark,性能比MapReduce的Hive普遍快2倍以上,当数据全部load在内存的话,将快10倍以上,因此Shark可以作为交互式查询应用服务来使用。除了基于Spark的特性外,Shark是完全兼容Hive的语法,表结构以及UDF函数等,已有的HiveSql可以直接进行迁移至Shark上Shark底层依赖于Hive的解析器,查询优化器,但正是由于SHark的整体设计架构对Hive的依赖性太强,难以支持其长远发展,比如不能和Spark的其他组件进行很好的集成,无法满足Spark的一栈式解决大数据处理的需求。
2.SparkSQL
1.SparkSQL介绍
Hive是Shark的前身,Shark是SparkSQL的前身,SparkSQL产生的根本原因是其完全脱离了Hive的限制。
SparkSQL支持查询原生的RDD。 RDD是Spark平台的核心概念,是Spark能够高效的处理大数据的各种场景的基础。
能够在Scala中写SQL语句。支持简单的SQL语法检查,能够在Scala中写Hive语句访问Hive数据,并将结果取回作为RDD使用。
2.Spark on Hive和Hive on Spark
Spark on Hive: Hive只作为储存角色,Spark负责sql解析优化,执行。
Hive on Spark:Hive即作为存储又负责sql的解析优化,Spark负责执行。
3.DataFrame
DataFrame也是一个分布式数据容器。与RDD类似,然而DataFrame更像传统数据库的二维表格,除了数据以外,还掌握数据的结构信息,即schema。同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。从API易用性的角度上 看, DataFrame API提供的是一套高层的关系操作,比函数式的RDD API要更加友好,门槛更低。
DataFrame的底层封装的是RDD,只不过RDD的泛型是Row类型。
4.SparkSQL的数据源
SparkSQL的数据源可以是JSON类型的字符串,JDBC,Parquent,Hive,HDFS等。
5.SparkSQL底层架构
首先拿到sql后解析一批未被解决的逻辑计划,再经过分析得到分析后的逻辑计划,再经过一批优化规则转换成一批最佳优化的逻辑计划,再经过SparkPlanner的策略转化成一批物理计划,随后经过消费模型转换成一个个的Spark任务执行。
6.谓词下推(predicate Pushdown)
3.创建DataFrame的几种方式
1.读取json格式的文件创建DataFrame
注意:
- json文件中的json数据不能嵌套json格式数据。
- DataFrame是一个一个Row类型的RDD,df.rdd()/df.javaRdd()。
- 可以两种方式读取json格式的文件。
- df.show()默认显示前20行数据。
- DataFrame原生API可以操作DataFrame(不方便)。
- 注册成临时表时,表中的列默认按ascii顺序显示列。
/** * 读取json格式的文件创建DataFrame * * 注意 :json文件中不能嵌套json格式的内容 * * 1.读取json格式两种方式 * 2.df.show默认显示前20行,使用df.show(行数)显示多行 * 3.df.javaRDD/(scala df.rdd) 将DataFrame转换成RDD * 4.df.printSchema()显示DataFrame中的Schema信息 * 5.dataFram自带的API 操作DataFrame ,用的少 * 6.想使用sql查询,首先要将DataFrame注册成临时表:df.registerTempTable("jtable"),再使用sql,怎么使用sql?sqlContext.sql("sql语句") * 7.不能读取嵌套的json文件 * 8.df加载过来之后将列按照ascii排序了 * @author root * */ public class SparkSQLTest { public static void main(String[] args) { SparkConf conf = new SparkConf().setMaster("local").setAppName("SQL"); JavaSparkContext sc =new JavaSparkContext(conf); //创建SQLContext SQLContext sqlContext = new SQLContext(sc); /** * DataFrame的底层是一个一个的RDD RDD的泛型是Row类型。 * 以下两种方式都可以读取json格式的文件 */ DataFrame df = sqlContext.read().format("json").load("sparkSQL/json"); //DataFrame df2 = sqlContext.read().json("sparkSQL/json"); /** * 显示 DataFrame中的内容,默认显示前20行。如果现实多行要指定多少行show(行数) * 注意:当有多个列时,显示的列先后顺序是按列的ascii码先后显示。 */ df.show(); /** * DataFrame转换成RDD */ RDD<Row> rdd = df.rdd(); /** * 树形的形式显示schema信息 */ df.printSchema(); /** * dataFram自带的API 操作DataFrame */ df.select("name").show(); //select name age+10 as addage from table df.select(df.col("name"),df.col("age").plus(10).alias("addage")).show(); //select name ,age from table where age>19 df.select(df.col("name"),df.col("age")).where(df.col("age").gt(19)).show(); //select count(*) from table group by age df.groupBy(df.col("age")).count().show(); /** * 将DataFrame注册成临时的一张表,这张表临时注册到内存中,是逻辑上的表,不会雾化到磁盘 */ df.registerTempTable("stable"); DataFrame sql = sqlContext.sql("select name,count(1) from stable group by name"); DataFrame sql2 = sqlContext.sql("select * from stable"); sql2.show(); sc.stop(); } }
2. 通过json格式的RDD创建DataFrame
public class CreateDFFromJsonRDD { public static void main(String[] args) { SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("jsonRDD"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> nameRDD = sc.parallelize(Arrays.asList( "{\'name\':\'zhangsan\',\'age\':\\"18\\"}", "{\\"name\\":\\"lisi\\",\\"age\\":\\"19\\"}", "{\\"name\\":\\"wangwu\\",\\"age\\":\\"20\\"}" )); JavaRDD<String> scoreRDD = sc.parallelize(Arrays.asList( "{\\"name\\":\\"zhangsan\\",\\"score\\":\\"100\\"}", "{\\"name\\":\\"lisi\\",\\"score\\":\\"200\\"}", "{\\"name\\":\\"wangwu\\",\\"score\\":\\"300\\"}" )); DataFrame namedf = sqlContext.read().json(nameRDD); namedf.show(); DataFrame scoredf = sqlContext.read().json(scoreRDD); scoredf.show(); //SELECT t1.name,t1.age,t2.score from t1, t2 where t1.name = t2.name //daframe原生api使用 // namedf.join(scoredf, namedf.col("name").$eq$eq$eq(scoredf.col("name"))) // .select(namedf.col("name"),namedf.col("age"),scoredf.col("score")).show(); //注册成临时表使用 namedf.registerTempTable("name"); scoredf.registerTempTable("score"); /** * 如果自己写的sql查询得到的DataFrame结果中的列会按照 查询的字段顺序返回 */ DataFrame result = sqlContext.sql("select name.name,name.age,score.score " + "from name join score " + "on name.name = score.name"); result.show(); sc.stop(); } }
3. 非json格式的RDD创建DataFrame
1) 通过反射的方式将非json格式的RDD转换成DataFrame(不建议使用)
- 自定义类要可序列化
- 自定义类的访问级别是Public
- RDD转成DataFrame后会根据映射将字段按Assci码排序
- 将DataFrame转换成RDD时获取字段两种方式,一种是df.getInt(0)下标获取(不推荐使用),另一种是df.getAs(“列名”)获取(推荐使用)
/** * 注意: * 1.自定义类必须是可序列化的 * 2.自定义类访问级别必须是Public * 3.RDD转成DataFrame会把自定义类中字段的名称按assci码排序 */ SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("RDD"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> lineRDD = sc.textFile("sparksql/person.txt"); JavaRDD<Person> personRDD = lineRDD.map(new Function<String, Person>() { /** * */ private static final long serialVersionUID = 1L; @Override public Person call(String s) throws Exception { Person p = new Person(); p.setId(s.split(",")[0]); p.setName(s.split(",")[1]); p.setAge(Integer.valueOf(s.split(",")[2])); return p; } }); /** * 传入进去Person.class的时候,sqlContext是通过反射的方式创建DataFrame * 在底层通过反射的方式获得Person的所有field,结合RDD本身,就生成了DataFrame */ DataFrame df = sqlContext.createDataFrame(personRDD, Person.class); df.show(); df.registerTempTable("person"); sqlContext.sql("select name from person where id = 2").show(); /** * 将DataFrame转成JavaRDD * 注意: * 1.可以使用row.getInt(0),row.getString(1)...通过下标获取返回Row类型的数据,但是要注意列顺序问题---不常用 * 2.可以使用row.getAs("列名")来获取对应的列值。 * */ JavaRDD<Row> javaRDD = df.javaRDD(); JavaRDD<Person> map = javaRDD.map(new Function<Row, Person>() { /** * */ private static final long serialVersionUID = 1L; @Override public Person call(Row row) throws Exception { Person p = new Person(); //p.setId(row.getString(1)); //p.setName(row.getString(2)); //p.setAge(row.getInt(0)); p.setId((String)row.getAs("id")); p.setName((String)row.getAs("name")); p.setAge((Integer)row.getAs("age")); return p; } }); map.foreach(new VoidFunction<Person>() { /** * */ private static final long serialVersionUID = 1L; @Override public void call(Person t) throws Exception { System.out.println(t); } }); sc.stop();
2) 动态创建Schema将非json格式的RDD转换成DataFrame
SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("rddStruct"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> lineRDD = sc.textFile("./sparksql/person.txt"); /** * 转换成Row类型的RDD */ JavaRDD<Row> rowRDD = lineRDD.map(new Function<String, Row>() { /** * */ private static final long serialVersionUID = 1L; @Override public Row call(String s) throws Exception { return RowFactory.create( String.valueOf(s.split(",")[0]), String.valueOf(s.split(",")[1]), Integer.valueOf(s.split(",")[2]) ); } }); /** * 动态构建DataFrame中的元数据,一般来说这里的字段可以来源自字符串,也可以来源于外部数据库 */ List<StructField> asList =Arrays.asList( DataTypes.createStructField("id", DataTypes.StringType, true), DataTypes.createStructField("name", DataTypes.StringType, true), DataTypes.createStructField("age", DataTypes.IntegerType, true) ); StructType schema = DataTypes.createStructType(asList); DataFrame df = sqlContext.createDataFrame(rowRDD, schema); df.show(); sc.stop();
4 读取parquet文件创建DataFrame
注意:
- 可以将DataFrame存储成parquet文件。保存成parquet文件的方式有两种
df.write().mode(SaveMode.Overwrite)format("parquet") .save("./sparksql/parquet"); df.write().mode(SaveMode.Overwrite).parquet("./sparksql/parquet");
- Overwrite:覆盖SaveMode指定文件保存时的模式。
Append:追加
ErrorIfExists:如果存在就报错
Ignore:如果存在就忽略
SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("parquet"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> jsonRDD = sc.textFile("sparksql/json"); DataFrame df = sqlContext.read().json(jsonRDD); /** * 将DataFrame保存成parquet文件,SaveMode指定存储文件时的保存模式 * 保存成parquet文件有以下两种方式: */ df.write().mode(SaveMode.Overwrite).format("parquet").save("./sparksql/parquet"); df.write().mode(SaveMode.Overwrite).parquet("./sparksql/parquet"); df.show(); /** * 加载parquet文件成DataFrame * 加载parquet文件有以下两种方式: */ DataFrame load = sqlContext.read().format("parquet").load("./sparksql/parquet"); load = sqlContext.read().parquet("./sparksql/parquet"); load.show(); sc.stop();
5 读取JDBC中的数据创建DataFrame(mysql为例)
两种方式创建DataFrame
SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("mysql"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); /** * 第一种方式读取MySql数据库表,加载为DataFrame */ Map<String, String> options = new HashMap<String,String>(); options.put("url", "jdbc:mysql://192.168.179.4:3306/spark"); options.put("driver", "com.mysql.jdbc.Driver"); options.put("user", "root"); options.put("password", "123456"); options.put("dbtable", "person"); DataFrame person = sqlContext.read().format("jdbc").options(options).load(); person.show(); person.registerTempTable("person"); /** * 第二种方式读取MySql数据表加载为DataFrame */ DataFrameReader reader = sqlContext.read().format("jdbc"); reader.option("url", "jdbc:mysql://192.168.179.4:3306/spark"); reader.option("driver", "com.mysql.jdbc.Driver"); reader.option("user", "root"); reader.option("password", "123456"); reader.option("dbtable", "score"); DataFrame score = reader.load(); score.show(); score.registerTempTable("score"); DataFrame result = sqlContext.sql("select person.id,person.name,score.score from person,score where person.name = score.name"); result.show(); /** * 将DataFrame结果保存到Mysql中 */ Properties properties = new Properties(); properties.setProperty("user", "root"); properties.setProperty("password", "123456"); result.write().mode(SaveMode.Overwrite).jdbc("jdbc:mysql://192.168.179.4:3306/spark", "result", properties); sc.stop();
6 读取Hive中的数据加载成DataFrame
- HiveContext是SQLContext的子类,连接Hive建议使用HiveContext。
- 由于本地没有Hive环境,要提交到集群运行,提交命令:
./spark-submit --master spark://node1:7077,node2:7077 --executor-cores 1 --executor-memory 2G --total-executor-cores 1 --class com.bjsxt.sparksql.dataframe.CreateDFFromHive /root/test/HiveTest.jar
代码:
SparkConf conf = new SparkConf(); conf.setAppName("hive"); JavaSparkContext sc = new JavaSparkContext(conf); //HiveContext是SQLContext的子类。 HiveContext hiveContext = new HiveContext(sc); hiveContext.sql("USE spark"); hiveContext.sql("DROP TABLE IF EXISTS student_infos"); //在hive中创建student_infos表 hiveContext.sql("CREATE TABLE IF NOT EXISTS student_infos (name STRING,age INT) row format delimited fields terminated by \'\\t\' "); hiveContext.sql("load data local inpath \'/root/test/student_infos\' into table student_infos"); hiveContext.sql("DROP TABLE IF EXISTS student_scores"); hiveContext.sql("CREATE TABLE IF NOT EXISTS student_scores (name STRING, score INT) row format delimited fields terminated by \'\\t\'"); hiveContext.sql("LOAD DATA " + "LOCAL INPATH \'/root/test/student_scores\'" + "INTO TABLE student_scores"); /** * 查询表生成DataFrame */ DataFrame goodStudentsDF = hiveContext.sql("SELECT si.name, si.age, ss.score " + "FROM student_infos si " + "JOIN student_scores ss " + "ON si.name=ss.name " + "WHERE ss.score>=80"); hiveContext.sql("DROP TABLE IF EXISTS good_student_infos"); goodStudentsDF.registerTempTable("goodstudent"); DataFrame result = hiveContext.sql("select * from goodstudent"); result.show(); /** * 将结果保存到hive表 good_student_infos */ goodStudentsDF.write().mode(SaveMode.Overwrite).saveAsTable("good_student_infos"); Row[] goodStudentRows = hiveContext.table("good_student_infos").collect(); for(Row goodStudentRow : goodStudentRows) { System.out.println(goodStudentRow); } sc.stop();
4 Spark On Hive的配置
1 在Spark客户端配置Hive On Spark
在Spark客户端安装包下spark-1.6.0/conf中创建文件hive-site.xml:
配置hive的metastore路径
<configuration> <property> <name>hive.metastore.uris</name> <value>thrift://node1:9083</value> </property> </configuration>
2 启动Hive的metastore服务
hive --service metastore
3 启动zookeeper集群,启动HDFS集群。
4 启动SparkShell 读取Hive中的表总数,对比hive中查询同一表查询总数测试时间。
./spark-shell --master spark://node1:7077,node2:7077 --executor-cores 1 --executor-memory 1g --total-executor-cores 1 import org.apache.spark.sql.hive.HiveContext val hc = new HiveContext(sc) hc.sql("show databases").show hc.sql("user default").show hc.sql("select count(*) from jizhan").show
¬ 注意:
如果使用Spark on Hive 查询数据时,出现错误:
找不到HDFS集群路径,要在客户端机器conf/spark-env.sh中设置HDFS的路径:
5 序列化问题
6 储存DataFrame
1 将DataFrame存储为parquet文件。
见3.4
2 将DataFrame存储到JDBC数据库。
见3.5
3 将DataFrame存储到Hive表。
见3.6
7 自定义函数UDF和UDAF
1 UDF:用户自定义函数。
可以自定义类实现UDFX接口.
SparkConf conf = new SparkConf(); conf.setMaster("local"); conf.setAppName("udf"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> parallelize = sc.parallelize(Arrays.asList("zhansan","lisi","wangwu")); JavaRDD<Row> rowRDD = parallelize.map(new Function<String, Row>() { /** * */ private static final long serialVersionUID = 1L; @Override public Row call(String s) throws Exception { return RowFactory.create(s); } }); List<StructField> fields = new ArrayList<StructField>(); fields.add(DataTypes.createStructField("name", DataTypes.StringType,true)); StructType schema = DataTypes.createStructType(fields); DataFrame df = sqlContext.createDataFrame(rowRDD,schema); df.registerTempTable("user"); /** * 根据UDF函数参数的个数来决定是实现哪一个UDF UDF1,UDF2。。。。UDF1xxx */ sqlContext.udf().register("StrLen", new UDF1<String,Integer>() { /** * */ private static final long serialVersionUID = 1L; @Override public Integer call(String t1) throws Exception { return t1.length(); } }, DataTypes.IntegerType); sqlContext.sql("select name ,StrLen(name) as length from user").show(); //sqlContext.udf().register("StrLen",new UDF2<String, Integer, Integer>() { // // /** // * // */ // private static final long serialVersionUID = 1L; // // @Override // public Integer call(String t1, Integer t2) throws Exception { //return t1.length()+t2; // } //} ,DataTypes.IntegerType ); //sqlContext.sql("select name ,StrLen(name,10) as length from user").show(); sc.stop();
2 UDAF:用户自定义聚合函数。
- 实现UDAF函数如果要自定义类要继承UserDefinedAggregateFunction类
SparkConf conf = new SparkConf(); conf.setMaster("local").setAppName("udaf"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); JavaRDD<String> parallelize = sc.parallelize(Arrays.asList("zhansan","lisi","wangwu","zhangsan","zhangsan","lisi")); JavaRDD<Row> rowRDD = parallelize.map(new Function<String, Row>() { /** * */ private static final long serialVersionUID = 1L; @Override public Row call(String s) throws Exception { return RowFactory.create(s); } }); List<StructField> fields = new ArrayList<StructField>(); fields.add(DataTypes.createStructField("name", DataTypes.StringType, true)); StructType schema = DataTypes.createStructType(fields); DataFrame df = sqlContext.createDataFrame(rowRDD, schema); df.registerTempTable("user"); /** * 注册一个UDAF函数,实现统计相同值得个数 * 注意:这里可以自定义一个类继承UserDefinedAggregateFunction类也是可以的 */ sqlContext.udf().register("StringCount", new UserDefinedAggregateFunction() { /** * */ private static final long serialVersionUID = 1L; /** * 更新 可以认为一个一个地将组内的字段值传递进来 实现拼接的逻辑 * buffer.getInt(0)获取的是上一次聚合后的值 * 相当于map端的combiner,combiner就是对每一个map task的处理结果进行一次小聚合 * 大聚和发生在reduce端. * 这里即是:在进行聚合的时候,每当有新的值进来,对分组后的聚合如何进行计算 */ @Override public void update(MutableAggregationBuffer buffer, Row arg1) { buffer.update(0, buffer.getInt(0)+1); } /** * 合并 update操作,可能是针对一个分组内的部分数据,在某个节点上发生的 但是可能一个分组内的数据,会分布在多个节点上处理 * 此时就要用merge操作,将各个节点上分布式拼接好的串,合并起来 * buffer1.getInt(0) : 大聚和的时候 上一次聚合后的值 * buffer2.getInt(0) : 这次计算传入进来的update的结果 * 这里即是:最后在分布式节点完成后需要进行全局级别的Merge操作 */ @Override public void merge(MutableAggregationBuffer buffer1, Row buffer2) { buffer1.update(0, buffer1.getInt(0) + buffer2.getInt(0)); } /** * 指定输入字段的字段及类型 */ @Override public StructType inputSchema() { return DataTypes.createStructType( Arrays.asList(DataTypes.createStructField("name", DataTypes.StringType, true))); } /** * 初始化一个内部的自己定义的值,在Aggregate之前每组数据的初始化结果 */ @Override public void initialize(MutableAggregationBuffer buffer) { buffer.update(0, 0); } /** * 最后返回一个和DataType的类型要一致的类型,返回UDAF最后的计算结果 */ @Override public Object evaluate(Row row) { return row.getInt(0); } @Override public boolean deterministic() { //设置为true return true; } /** * 指定UDAF函数计算后返回的结果类型 */ @Override public DataType dataType() { return DataTypes.IntegerType; } /** * 在进行聚合操作的时候所要处理的数据的结果的类型 */ @Override public StructType bufferSchema() { return DataTypes.createStructType( Arrays.asList(DataTypes.createStructField("bf", DataTypes.IntegerType, true))); } }); sqlContext.sql("select name ,StringCount(name) from user group by name").show(); sc.stop();
8 开窗函数
注意:
row_number() 开窗函数是按照某个字段分组,然后取另一字段的前几个的值,相当于 分组取topN
如果SQL语句里面使用到了开窗函数,那么这个SQL语句必须使用HiveContext来执行,HiveContext默认情况下在本地无法创建。
开窗函数格式:
row_number() over (partitin by XXX order by XXX)
SparkConf conf = new SparkConf(); conf.setAppName("windowfun"); conf.set("spark.sql.shuffle.partitions","1"); JavaSparkContext sc = new JavaSparkContext(conf); HiveContext hiveContext = new HiveContext(sc); hiveContext.sql("use spark"); hiveContext.sql("drop table if exists sales"); hiveContext.sql("create table if not exists sales (riqi string,leibie string,jine Int) " + "row format delimited fields terminated by \'\\t\'"); hiveContext.sql("load data local inpath \'/root/test/sales\' into table sales"); /** * 开窗函数格式: * 【 row_number() over (partition by XXX order by XXX DESC) as rank】 * 注意:rank 从1开始 */ /** * 以类别分组,按每种类别金额降序排序,显示 【日期,种类,金额】 结果,如: * * 1 A 100 * 2 B 200 * 3 A 300 * 4 B 400 * 5 A 500 * 6 B 600 * 排序后: * 5 A 500 --rank 1 * 3 A 300 --rank 2 * 1 A 100 --rank 3 * 6 B 600 --rank 1 * 4 B 400 --rank 2 * 2 B 200 --rank 3 * */ DataFrame result = hiveContext.sql("select riqi,leibie,jine " + "from (" + "select riqi,leibie,jine," + "row_number() over (partition by leibie order by jine desc) rank " + "from sales) t " + "where t.rank<=3"); result.show(100); /** * 将结果保存到hive表sales_result */ result.write().mode(SaveMode.Overwrite).saveAsTable("sales_result"); sc.stop();
以上是关于spark记录(13)SparkSQL的主要内容,如果未能解决你的问题,请参考以下文章