大数据学习——高可用配置案例

Posted o_0

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据学习——高可用配置案例相关的知识,希望对你有一定的参考价值。

(一)、failover故障转移

在完成单点的Flume NG搭建后,下面我们搭建一个高可用的Flume NG集群,架构图如下所示:

(1)节点分配

Flume的Agent和Collector分布如下表所示:

名称

Ip地址

        Host

角色

Agent1

192.168.200.101

Itcast01

    WebServer

Collector1

192.168.200.102

Itcast02

AgentMstr1

Collector2

192.168.200.103

Itcast03

AgentMstr2

Agent1数据分别流入到Collector1和Collector2,Flume NG本身提供了Failover机制,可以自动切换和恢复。下面我们开发配置Flume NG集群。

(2)配置

在下面单点Flume中,基本配置都完成了,我们只需要新添加两个配置文件,它们是flume-client.conf和flume-server.conf,其配置内容如下所示:

 

1、itcast01上的flume-client.conf配置

#agent1 name

agent1.channels = c1

agent1.sources = r1

agent1.sinks = k1 k2

 

#set gruop

agent1.sinkgroups = g1

#set sink group

agent1.sinkgroups.g1.sinks = k1 k2

 

#set channel

agent1.channels.c1.type = memory

agent1.channels.c1.capacity = 1000

agent1.channels.c1.transactionCapacity = 100

 

agent1.sources.r1.channels = c1

agent1.sources.r1.type = exec

agent1.sources.r1.command = tail -F /root/log/test.log

 

agent1.sources.r1.interceptors = i1 i2

agent1.sources.r1.interceptors.i1.type = static

agent1.sources.r1.interceptors.i1.key = Type

agent1.sources.r1.interceptors.i1.value = LOGIN

agent1.sources.r1.interceptors.i2.type = timestamp

 

 

# set sink1

agent1.sinks.k1.channel = c1

agent1.sinks.k1.type = avro

agent1.sinks.k1.hostname = itcast02

agent1.sinks.k1.port = 52020

 

# set sink2

agent1.sinks.k2.channel = c1

agent1.sinks.k2.type = avro

agent1.sinks.k2.hostname = itcast03

agent1.sinks.k2.port = 52020

 

#set failover

agent1.sinkgroups.g1.processor.type = failover

agent1.sinkgroups.g1.processor.priority.k1 = 10

agent1.sinkgroups.g1.processor.priority.k2 = 5

agent1.sinkgroups.g1.processor.maxpenalty = 10000

#这里首先要申明一个sinkgroups,然后再设置2个sink ,k1与k2,其中2个优先级是10和5,#而processor的maxpenalty被设置为10秒,默认是30秒。‘

 

启动命令:

bin/flume-ng agent -n agent1 -c conf -f conf/flume-client.conf

-Dflume.root.logger=DEBUG,console

2、Itcast02和itcast03上的flume-server.conf配置

#set Agent name

a1.sources = r1

a1.channels = c1

a1.sinks = k1

 

#set channel

a1.channels.c1.type = memory

a1.channels.c1.capacity = 1000

a1.channels.c1.transactionCapacity = 100

 

# other node,nna to nns

a1.sources.r1.type = avro

a1.sources.r1.bind = 0.0.0.0

a1.sources.r1.port = 52020

a1.sources.r1.channels = c1

a1.sources.r1.interceptors = i1 i2

a1.sources.r1.interceptors.i1.type = timestamp

a1.sources.r1.interceptors.i2.type = host

a1.sources.r1.interceptors.i2.hostHeader=hostname

 

#set sink to hdfs

a1.sinks.k1.type=hdfs

a1.sinks.k1.hdfs.path=/data/flume/logs/%{hostname}

a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d

a1.sinks.k1.hdfs.fileType=DataStream

a1.sinks.k1.hdfs.writeFormat=TEXT

a1.sinks.k1.hdfs.rollInterval=10

a1.sinks.k1.channel=c1

 

启动命令:

bin/flume-ng agent -n agent1 -c conf -f conf/flume-server.conf

-Dflume.root.logger=DEBUG,console

(3)测试failover

1、先在itcast02和itcast03上启动脚本

bin/flume-ng agent -n a1 -c conf -f conf/flume-server.conf

-Dflume.root.logger=DEBUG,console

 

2、然后启动itcast01上的脚本

bin/flume-ng agent -n agent1 -c conf -f conf/flume-client.conf

-Dflume.root.logger=DEBUG,console

3、Shell脚本生成数据

 while true;do date >> test.log; sleep 1s ;done

4、观察HDFS上生成的数据目录。只观察到itcast02在接受数据

5、Itcast02上的agent被干掉之后,继续观察HDFS上生成的数据目录,itcast03对应的ip目录出现,此时数据收集切换到itcast03上

6、Itcast02上的agent重启后,继续观察HDFS上生成的数据目录。此时数据收集切换到itcast02上,又开始继续工作!

(二)、load balance负载均衡

(1)节点分配

如failover故障转移的节点分配

(2)配置

在failover故障转移的配置上稍作修改

itcast01上的flume-client-loadbalance.conf配置

#agent1 name

agent1.channels = c1

agent1.sources = r1

agent1.sinks = k1 k2

 

#set gruop

agent1.sinkgroups = g1

 

#set channel

agent1.channels.c1.type = memory

agent1.channels.c1.capacity = 1000

agent1.channels.c1.transactionCapacity = 100

agent1.sources.r1.channels = c1

agent1.sources.r1.type = exec

agent1.sources.r1.command = tail -F /root/log/test.log

 

# set sink1

agent1.sinks.k1.channel = c1

agent1.sinks.k1.type = avro

agent1.sinks.k1.hostname = itcast02

agent1.sinks.k1.port = 52020

 

# set sink2

agent1.sinks.k2.channel = c1

agent1.sinks.k2.type = avro

agent1.sinks.k2.hostname = itcast03

agent1.sinks.k2.port = 52020

 

#set sink group

agent1.sinkgroups.g1.sinks = k1 k2

 

#set load-balance

agent1.sinkgroups.g1.processor.type = load_balance

# 默认是round_robin,还可以选择random

agent1.sinkgroups.g1.processor.selector = round_robin

#如果backoff被开启,则 sink processor会屏蔽故障的sink

agent1.sinkgroups.g1.processor.backoff = true

 

 

Itcast02和itcast03上的flume-server-loadbalance.conf配置

#set Agent name

a1.sources = r1

a1.channels = c1

a1.sinks = k1

 

#set channel

a1.channels.c1.type = memory

a1.channels.c1.capacity = 1000

a1.channels.c1.transactionCapacity = 100

 

# other node,nna to nns

a1.sources.r1.type = avro

a1.sources.r1.bind = 0.0.0.0

a1.sources.r1.port = 52020

a1.sources.r1.channels = c1

a1.sources.r1.interceptors = i1 i2

a1.sources.r1.interceptors.i1.type = timestamp

a1.sources.r1.interceptors.i2.type = host

a1.sources.r1.interceptors.i2.hostHeader=hostname

a1.sources.r1.interceptors.i2.useIP=false

#set sink to hdfs

a1.sinks.k1.type=hdfs

a1.sinks.k1.hdfs.path=/data/flume/loadbalance/%{hostname}

a1.sinks.k1.hdfs.fileType=DataStream

a1.sinks.k1.hdfs.writeFormat=TEXT

a1.sinks.k1.hdfs.rollInterval=10

a1.sinks.k1.channel=c1

a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d

(3)测试load balance

1、先在itcast02和itcast03上启动脚本

bin/flume-ng agent -n a1 -c conf -f conf/flume-server-loadbalance.conf

-Dflume.root.logger=DEBUG,console

2、然后启动itcast01上的脚本

bin/flume-ng agent -n agent1 -c conf -f conf/flume-client-loadbalance.conf

-Dflume.root.logger=DEBUG,console

3、Shell脚本生成数据

 while true;do date >> test.log; sleep 1s ;done

4、观察HDFS上生成的数据目录,由于轮训机制都会收集到数据

  5、Itcast02上的agent被干掉之后,itcast02上不在产生数据

  6、Itcast02上的agent重新启动后,两者都可以接受到数据

 

以上是关于大数据学习——高可用配置案例的主要内容,如果未能解决你的问题,请参考以下文章

大数据之高可用Mongodb集群部署

大数据学习4(高可用hadoop集群)

大数据学习5(基于yarn的高可用集群搭建)

java学完框架后学什么?java架构师进阶学习,java高并发集群分布式,java大数据高可用,视频教程,

java700多个G架构师项目实战,高并发集群分布式,大数据高可用,视频教程获取方式

2021年 全网最细大数据学习笔记:Hadoop 之 HDFS 进程详解