为什么要学?
Scrapy_redis在scrapy的基础上实现了更多,更强大的功能。
有哪些功能体现?
request去重、爬虫持久化、实现分布式爬虫、断点续爬(带爬取的request存在redis中)、增量式爬虫(爬取过的生成指纹)
工作流程
先来看看之前的爬虫流程
再来看看scrapy_redis的爬虫流程
安装:
源码包安装:
git clone git://github.com/rolando/scrapy-redis
官方文档在:https://scrapy-redis.readthedocs.io/en/stable/index.html#running-the-example-project
scrapy_redis 的源码在github:https://github.com/rmax/scrapy-redis
它提供了三个demo在example-projec/example中
三个案例有
先来看第一个案例:
dmoz.py
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
class DmozSpider(CrawlSpider):
"""Follow categories and extract links."""
name = \'dmoz\'
allowed_domains = [\'dmoz.org\']
start_urls = [\'http://www.dmoz.org/\']
rules = [
Rule(LinkExtractor(
restrict_css=(\'.top-cat\', \'.sub-cat\', \'.cat-item\')
), callback=\'parse_directory\', follow=True),
]
def parse_directory(self, response):
for div in response.css(\'.title-and-desc\'):
yield {
\'name\': div.css(\'.site-title::text\').extract_first(),
\'description\': div.css(\'.site-descr::text\').extract_first().strip(),
\'link\': div.css(\'a::attr(href)\').extract_first(),
}
这个案例很像我们自己写的crawlspider什么区别,所以接下来就要进行配置操作
先来看看官方的 Use the following settings in your project:
1 # 指定schedule队列
2 # Enables scheduling storing requests queue in redis.
3 SCHEDULER = "scrapy_redis.scheduler.Scheduler"
4
5
6 # 指定哪个去重方法给request对象去重
7 # Ensure all spiders share same duplicates filter through redis.
8 DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
9
10 # Default requests serializer is pickle, but it can be changed to any module
11 # with loads and dumps functions. Note that pickle is not compatible between
12 # python versions.
13 # Caveat: In python 3.x, the serializer must return strings keys and support
14 # bytes as values. Because of this reason the json or msgpack module will not
15 # work by default. In python 2.x there is no such issue and you can use
16 # \'json\' or \'msgpack\' as serializers.
17 #SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat"
18
19 # 队列中的内容是否持久保存,False:在关闭redis的时候清空redis
20 # Don\'t cleanup redis queues, allows to pause/resume crawls.
21 #SCHEDULER_PERSIST = True
22
23 # Schedule requests using a priority queue. (default)
24 #SCHEDULER_QUEUE_CLASS = \'scrapy_redis.queue.PriorityQueue\'
25
26 # Alternative queues.
27 #SCHEDULER_QUEUE_CLASS = \'scrapy_redis.queue.FifoQueue\'
28 #SCHEDULER_QUEUE_CLASS = \'scrapy_redis.queue.LifoQueue\'
29
30 # Max idle time to prevent the spider from being closed when distributed crawling.
31 # This only works if queue class is SpiderQueue or SpiderStack,
32 # and may also block the same time when your spider start at the first time (because the queue is empty).
33 #SCHEDULER_IDLE_BEFORE_CLOSE = 10
34
35 # scrapy_redis实现的items保存到redis的pipeline
36 # Store scraped item in redis for post-processing.
37 ITEM_PIPELINES = {
38 \'scrapy_redis.pipelines.RedisPipeline\': 300
39 }
40
41 # The item pipeline serializes and stores the items in this redis key.
42 #REDIS_ITEMS_KEY = \'%(spider)s:items\'
43
44 # The items serializer is by default ScrapyJSONEncoder. You can use any
45 # importable path to a callable object.
46 #REDIS_ITEMS_SERIALIZER = \'json.dumps\'
47
48 # 指定redis的地址
49 # Specify the host and port to use when connecting to Redis (optional).
50 #REDIS_HOST = \'localhost\'
51 #REDIS_PORT = 6379
52
53
54 # 指定redis的地址
55 # Specify the full Redis URL for connecting (optional).
56 # If set, this takes precedence over the REDIS_HOST and REDIS_PORT settings.
57 #REDIS_URL = \'redis://user:pass@hostname:9001\'
58
59 # Custom redis client parameters (i.e.: socket timeout, etc.)
60 #REDIS_PARAMS = {}
61 # Use custom redis client class.
62 #REDIS_PARAMS[\'redis_cls\'] = \'myproject.RedisClient\'
63
64 # If True, it uses redis\' ``spop`` operation. This could be useful if you
65 # want to avoid duplicates in your start urls list. In this cases, urls must
66 # be added via ``sadd`` command or you will get a type error from redis.
67 #REDIS_START_URLS_AS_SET = False
68
69 # Default start urls key for RedisSpider and RedisCrawlSpider.
70 #REDIS_START_URLS_KEY = \'%(name)s:start_urls\'
71
72 # Use other encoding than utf-8 for redis.
73 #REDIS_ENCODING = \'latin1\'
View Code
所以我们需要做的就是在配置文件中添加这几行
# 去重
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
# 调度器
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# 调度器持久化
SCHEDULER_PERSIST = True
# 指定redis地址
REDIS_URL = "redis://192.168.226.150:6379"
ITEM_PIPELINES = {
\'example.pipelines.ExamplePipeline\': 300,
\'scrapy_redis.pipelines.RedisPipeline\': 400, # 保存数据到redis
}
在这里也贴上github上的settings:
# Scrapy settings for example project
#
# For simplicity, this file contains only the most important settings by
# default. All the other settings are documented here:
#
# http://doc.scrapy.org/topics/settings.html
#
SPIDER_MODULES = [\'example.spiders\']
NEWSPIDER_MODULE = \'example.spiders\'
USER_AGENT = \'scrapy-redis (+https://github.com/rolando/scrapy-redis)\'
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
SCHEDULER_PERSIST = True
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderPriorityQueue"
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderQueue"
#SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderStack"
ITEM_PIPELINES = {
\'example.pipelines.ExamplePipeline\': 300,
\'scrapy_redis.pipelines.RedisPipeline\': 400,
}
LOG_LEVEL = \'DEBUG\'
# Introduce an artifical delay to make use of parallelism. to speed up the
# crawl.
DOWNLOAD_DELAY = 1
git hub
接下来我们就运行,跟往常的运行命令一样,切换到example 下,执行命令
\\example>scrapy crawl dmoz
然后就去redis中查看
可以看到多了三个键
dmoz:items :存放获取到的item信息,在pipeline中开启RedisPipeline才会存入
dmoz:dupefilter :指纹集合,存放的是已经进入 scheduler 队列的 request 对象的指纹,指纹默认由请求方法,url和请求体组成
dmoz:requests :Scheduler队列,存放着待请求的 request 对象,获取的过程是pop操作,即获取一个会去除一个
三个键的类型:
以及数据
items
dupefilter
requests
如果我们不想把数据存放到redis,而是放到其他的地方,应该怎么做?
先来测试一下redispiipeline 关闭的情况
#ITEM_PIPELINES = {
# \'example.pipelines.ExamplePipeline\': 300,
#\'scrapy_redis.pipelines.RedisPipeline\': 400, # 保存数据到redis
#}
再看看redis数据库中这三个键如何变化,变化结果:
dmoz:requests 有变化(变多或者变少或者不变)
dmoz:dupefilter 变多
dmoz:items 不变
所以 redispipeline中仅仅实现了item数据存储到redis的过程,我们可以新建一个pipeline(或者修改默认的ExamplePipeline),让数据存储到其他地方。
接下来看一下 RedisPipeline 的源码段
from scrapy_redis.pipelines import RedisPipeline
# 调用这个方法,实现数据的保存
def process_item(self, item, spider):
# 调用一个异步线程去处理这个item
return deferToThread(self._process_item, item, spider)
def _process_item(self, item, spider):
key = self.item_key(item, spider)
data = self.serialize(item)
# 向dmoz:items中添加item
self.server.rpush(key, data)
return item
去重的方法,通过生成指纹识别:指纹默认由请求方法,url和请求体组成
- 使用sha1加密request得到指纹
- 把指纹存在redis的集合中
- 下一次新来一个request,同样的方式生成指纹,判断指纹是否存在reids的集合中
- fp = hashlib.sha1()
- fp.update(request.method)
- fp.update(request.body or b"")
- fp.update(url)
- fp.hexdigest()
判断数据是否存在redis的集合中,不存在插入
added = self.server.sadd(self.key, fp)
return added != 0
去重的的类 RFPDupeFilter :
主要是这三个方法:
request_seen:判断requests对象是否已经存在,如果没有就添加到“dmoz:dupefilter”
request_fingerprint:调用函数request_fingerprint
request_fingerprint:主要是对请求进行加密生成指纹
下面来看看调度器:
总结:
domz案例相当于之前的spider多了两个内容:
1、持久化
2、request去重的功能
通过源码以及setting中的配置来看,我们可以重写 去重 和 调度器的方法 ,还有存储数据的 pipeline 。在配置中改成我们重写的类就行。
Scrapy_redis 之 RedisSpider
这是scrapy_redis 的第二个案例
先来看试一下初始源码
from scrapy_redis.spiders import RedisSpider
class MySpider(RedisSpider):
"""Spider that reads urls from redis queue (myspider:start_urls)."""
name = \'myspider_redis\'
redis_key = \'myspider:start_urls\'
def __init__(self, *args, **kwargs):
# Dynamically define the allowed domains list.
domain = kwargs.pop(\'domain\', \'\')
self.allowed_domains = filter(None, domain.split(\',\'))
super(MySpider, self).__init__(*args, **kwargs)
def parse(self, response):
return {
\'name\': response.css(\'title::text\').extract_first(),
\'url\': response.url,
}
myspider_redis.py
解析源码
配置文件设置:
# 去重
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
# 调度器
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# 调度器持久化
SCHEDULER_PERSIST = True
# 指定redis地址
REDIS_URL = "redis://192.168.226.150:6379"
ITEM_PIPELINES = {
\'example.pipelines.ExamplePipeline\': 300,
\'scrapy_redis.pipelines.RedisPipeline\': 400, # 保存数据到redis
}
start_url 只能由一台机器爬取,其他机器刚开始处于等待状态,这是随机的
但是这里的start_url 改为redis_key=\'自定义键名\' 例如(\'dangdang\')
那么执行的启动命令就是在redis中执行这条语句:lpush 健名 起始url
lpush dangdang http://www.dangdang.com
Scrapy_redis 之 RedisCrawlSpider
这是scrapy_redis 的第三个案例
先来看初始源码
from scrapy.spiders import Rule
from scrapy.linkextractors import LinkExtractor
from scrapy_redis.spiders import RedisCrawlSpider
class MyCrawler(RedisCrawlSpider):
"""Spider that reads urls from redis queue (myspider:start_urls)."""
name = \'mycrawler_redis\'
redis_key = \'mycrawler:start_urls\'
rules = (
# follow all links
Rule(LinkExtractor(), callback=\'parse_page\', follow=True),
)
def __init__(self, *args, **kwargs):
# Dynamically define the allowed domains list.
domain = kwargs.pop(\'domain\', \'\')
self.allowed_domains = filter(None, domain.split(\',\'))
super(MyCrawler, self).__init__(*args, **kwargs)
def parse_page(self, response):
return {
\'name\': response.css(\'title::text\').extract_first(),
\'url\': response.url,
}
mycrawl_redis.py
解析源码
配置文件
# 去重
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
# 调度器
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# 调度器持久化
SCHEDULER_PERSIST = True
# 指定redis地址
REDIS_URL = "redis://192.168.226.150:6379"
ITEM_PIPELINES = {
\'example.pipelines.ExamplePipeline\': 300,
\'scrapy_redis.pipelines.RedisPipeline\': 400, # 保存数据到redis
}
这个案例跟crawlspider的使用差不多,也是没有start_url 改为了 redis_key
启动方式跟案例二一样。爬虫准备就绪,redis数据库中