第09课:实战Redis网络通信模块源码分析
Posted 自强·
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了第09课:实战Redis网络通信模块源码分析相关的知识,希望对你有一定的参考价值。
侦听 fd 与客户端 fd 是如何挂载到 EPFD 上去的
同样的方式,要把一个 fd 挂载到 EPFD 上去,需要调用系统 API epoll_ctl ,搜索一下这个函数名。在文件 ae_epoll.c 中我们找到 aeApiAddEvent 函数:
static int aeApiAddEvent(aeEventLoop *eventLoop, int fd, int mask) { aeApiState *state = eventLoop->apidata; struct epoll_event ee = {0}; /* avoid valgrind warning */ /* If the fd was already monitored for some event, we need a MOD * operation. Otherwise we need an ADD operation. */ int op = eventLoop->events[fd].mask == AE_NONE ? EPOLL_CTL_ADD : EPOLL_CTL_MOD; ee.events = 0; mask |= eventLoop->events[fd].mask; /* Merge old events */ if (mask & AE_READABLE) ee.events |= EPOLLIN; if (mask & AE_WRITABLE) ee.events |= EPOLLOUT; ee.data.fd = fd; if (epoll_ctl(state->epfd,op,fd,&ee) == -1) return -1; return 0; }
当把一个 fd 绑定到 EPFD 上去的时候,先从 eventLoop( aeEventLoop类型 )中寻找是否存在已关注的事件类型,如果已经有了,说明使用 epoll_ctl 是更改已绑定的 fd 事件类型( EPOLL_CTL_MOD ),否则就是添加 fd 到 EPFD 上。
在 aeApiAddEvent 加个断点,再重启下 redis-server 。触发断点后的调用堆栈如下:
#0 aeCreateFileEvent (eventLoop=0x7ffff083a0a0, fd=15, mask=mask@entry=1, proc=0x437f50 <acceptTcpHandler>, clientData=clientData@entry=0x0) at ae.c:145 #1 0x000000000042f83b in initServer () at server.c:1927 #2 0x0000000000423803 in main (argc=<optimized out>, argv=0x7fffffffe588) at server.c:3857
同样在 initServer 函数中,结合上文分析的侦听 fd 的创建过程,去掉无关代码,抽出这个函数的主脉络得到如下伪代码:
void initServer(void) { //记录程序进程 ID server.pid = getpid(); //创建程序的 aeEventLoop 对象和 epfd 对象 server.el = aeCreateEventLoop(server.maxclients+CONFIG_FDSET_INCR); //创建侦听 fd listenToPort(server.port,server.ipfd,&server.ipfd_count) == C_ERR) //将侦听 fd 设置为非阻塞的 anetNonBlock(NULL,server.sofd); //创建 Redis 的定时器,用于执行定时任务 cron /* Create the timer callback, this is our way to process many background * operations incrementally, like clients timeout, eviction of unaccessed * expired keys and so forth. */ aeCreateTimeEvent(server.el, 1, serverCron, NULL, NULL) == AE_ERR //将侦听 fd 绑定到 epfd 上去 /* Create an event handler for accepting new connections in TCP and Unix * domain sockets. */ aeCreateFileEvent(server.el, server.ipfd[j], AE_READABLE, acceptTcpHandler,NULL) == AE_ERR //创建一个管道,用于在需要时去唤醒 epoll_wait 挂起的整个 EventLoop /* Register a readable event for the pipe used to awake the event loop * when a blocked client in a module needs attention. */ aeCreateFileEvent(server.el, server.module_blocked_pipe[0], AE_READABLE, moduleBlockedClientPipeReadable,NULL) == AE_ERR) }
注意:这里所说的“主脉络”是指我们关心的网络通信的主脉络,不代表这个函数中其他代码就不是主要的。
如何验证这个断点处挂载到 EPFD 上的 fd 就是侦听 fd 呢?很简单,创建侦听 fd 时,用 GDB 记录下这个 fd 的值。例如,当我的电脑某次运行时,侦听 fd 的值是 15 。如下图( 调试工具用的是 CGDB ):
然后在运行程序至绑定 fd 的地方,确认一下绑定到 EPFD 上的 fd 值:
这里的 fd 值也是 15 ,说明绑定的 fd 是侦听 fd 。当然在绑定侦听 fd 时,同时也指定了只关注可读事件,并设置事件回调函数为 acceptTcpHandler 。对于侦听 fd ,一般只要关注可读事件就可以了,当触发可读事件,说明有新的连接到来。
aeCreateFileEvent(server.el, server.ipfd[j], AE_READABLE, acceptTcpHandler,NULL) == AE_ERR
acceptTcpHandler 函数定义如下( 位于文件 networking.c 中 ):
void acceptTcpHandler(aeEventLoop *el, int fd, void *privdata, int mask) { int cport, cfd, max = MAX_ACCEPTS_PER_CALL; char cip[NET_IP_STR_LEN]; UNUSED(el); UNUSED(mask); UNUSED(privdata); while(max--) { cfd = anetTcpAccept(server.neterr, fd, cip, sizeof(cip), &cport); if (cfd == ANET_ERR) { if (errno != EWOULDBLOCK) serverLog(LL_WARNING, "Accepting client connection: %s", server.neterr); return; } serverLog(LL_VERBOSE,"Accepted %s:%d", cip, cport); acceptCommonHandler(cfd,0,cip); } }
anetTcpAccept 函数中调用的就是我们上面说的 anetGenericAccept 函数了。
int anetTcpAccept(char *err, int s, char *ip, size_t ip_len, int *port) { int fd; struct sockaddr_storage sa; socklen_t salen = sizeof(sa); if ((fd = anetGenericAccept(err,s,(struct sockaddr*)&sa,&salen)) == -1) return ANET_ERR; if (sa.ss_family == AF_INET) { struct sockaddr_in *s = (struct sockaddr_in *)&sa; if (ip) inet_ntop(AF_INET,(void*)&(s->sin_addr),ip,ip_len); if (port) *port = ntohs(s->sin_port); } else { struct sockaddr_in6 *s = (struct sockaddr_in6 *)&sa; if (ip) inet_ntop(AF_INET6,(void*)&(s->sin6_addr),ip,ip_len); if (port) *port = ntohs(s->sin6_port); } return fd; }
至此,这段流程总算连起来了,在 acceptTcpHandler 上加个断点,然后重新运行一下 redis-server ,再开个 redis-cli 去连接 redis-server 。看看是否能触发该断点,如果能触发该断点,说明我们的分析是正确的。
经验证,确实触发了该断点。
在 acceptTcpHandler 中成功接受新连接后,产生客户端 fd ,然后调用 acceptCommonHandler 函数,在该函数中调用 createClient 函数,在 createClient 函数中先将客户端 fd 设置成非阻塞的,然后将该 fd 关联到 EPFD 上去,同时记录到整个程序的 aeEventLoop 对象上。
client *createClient(int fd) { //将客户端 fd 设置成非阻塞的 anetNonBlock(NULL,fd); //启用 tcp NoDelay 选项 anetEnableTcpNoDelay(NULL,fd); //根据配置,决定是否启动 tcpkeepalive 选项 if (server.tcpkeepalive) anetKeepAlive(NULL,fd,server.tcpkeepalive); //将客户端 fd 绑定到 epfd,同时记录到 aeEventLoop 上,关注的事件为 AE_READABLE,回调函数为 //readQueryFromClient aeCreateFileEvent(server.el,fd,AE_READABLE, readQueryFromClient, c) == AE_ERR return c; }
如何处理 fd 可读事件
客户端 fd 触发可读事件后,回调函数是 readQueryFromClient 。该函数实现如下( 位于 networking.c 文件中):
void readQueryFromClient(aeEventLoop *el, int fd, void *privdata, int mask) { client *c = (client*) privdata; int nread, readlen; size_t qblen; UNUSED(el); UNUSED(mask); readlen = PROTO_IOBUF_LEN; /* If this is a multi bulk request, and we are processing a bulk reply * that is large enough, try to maximize the probability that the query * buffer contains exactly the SDS string representing the object, even * at the risk of requiring more read(2) calls. This way the function * processMultiBulkBuffer() can avoid copying buffers to create the * Redis Object representing the argument. */ if (c->reqtype == PROTO_REQ_MULTIBULK && c->multibulklen && c->bulklen != -1 && c->bulklen >= PROTO_MBULK_BIG_ARG) { int remaining = (unsigned)(c->bulklen+2)-sdslen(c->querybuf); if (remaining < readlen) readlen = remaining; } qblen = sdslen(c->querybuf); if (c->querybuf_peak < qblen) c->querybuf_peak = qblen; c->querybuf = sdsMakeRoomFor(c->querybuf, readlen); nread = read(fd, c->querybuf+qblen, readlen); if (nread == -1) { if (errno == EAGAIN) { return; } else { serverLog(LL_VERBOSE, "Reading from client: %s",strerror(errno)); freeClient(c); return; } } else if (nread == 0) { serverLog(LL_VERBOSE, "Client closed connection"); freeClient(c); return; } else if (c->flags & CLIENT_MASTER) { /* Append the query buffer to the pending (not applied) buffer * of the master. We\'ll use this buffer later in order to have a * copy of the string applied by the last command executed. */ c->pending_querybuf = sdscatlen(c->pending_querybuf, c->querybuf+qblen,nread); } sdsIncrLen(c->querybuf,nread); c->lastinteraction = server.unixtime; if (c->flags & CLIENT_MASTER) c->read_reploff += nread; server.stat_net_input_bytes += nread; if (sdslen(c->querybuf) > server.client_max_querybuf_len) { sds ci = catClientInfoString(sdsempty(),c), bytes = sdsempty(); bytes = sdscatrepr(bytes,c->querybuf,64); serverLog(LL_WARNING,"Closing client that reached max query buffer length: %s (qbuf initial bytes: %s)", ci, bytes); sdsfree(ci); sdsfree(bytes); freeClient(c); return; } /* Time to process the buffer. If the client is a master we need to * compute the difference between the applied offset before and after * processing the buffer, to understand how much of the replication stream * was actually applied to the master state: this quantity, and its * corresponding part of the replication stream, will be propagated to * the sub-slaves and to the replication backlog. */ if (!(c->flags & CLIENT_MASTER)) { processInputBuffer(c); } else { size_t prev_offset = c->reploff; processInputBuffer(c); size_t applied = c->reploff - prev_offset; if (applied) { replicationFeedSlavesFromMasterStream(server.slaves, c->pending_querybuf, applied); sdsrange(c->pending_querybuf,applied,-1); } } }
给这个函数加个断点,然后重新运行下 redis-server ,再启动一个客户端,然后尝试给服务器发送一个命令“set hello world”。但是在我们实际调试的时候会发现。只要 redis-cli 一连接成功,GDB 就触发该断点,此时并没有发送我们预想的命令。我们单步调试 readQueryFromClient 函数,将收到的数据打印出来,得到如下字符串:
(gdb) p c->querybuf $8 = (sds) 0x7ffff09b8685 "*1\\r\\n$7\\r\\nCOMMAND\\r\\n"
c → querybuf 是什么呢?这里 c 的类型是 client 结构体,它是上文中连接接收成功后产生的新客户端 fd 绑定回调函数时产生的、并传递给 readQueryFromClient 函数的参数。我们可以在 server.h 中找到它的定义:
* With multiplexing we need to take per-client state. * Clients are taken in a linked list. */ typedef struct client { uint64_t id; /* Client incremental unique ID. */ int fd; /* Client socket. */ redisDb *db; /* Pointer to currently SELECTed DB. */ robj *name; /* As set by CLIENT SETNAME. */ sds querybuf; /* Buffer we use to accumulate client queries. */ //省略掉部分字段 } client;
client 实际上是存储每个客户端连接信息的对象,其 fd 字段就是当前连接的 fd,querybuf 字段就是当前连接的接收缓冲区,也就是说每个新客户端连接都会产生这样一个对象。从 fd 上收取数据后就存储在这个 querybuf 字段中。
我们贴一下完整的 createClient 函数的代码:
client *createClient(int fd) { client *c = zmalloc(sizeof(client)); /* passing -1 as fd it is possible to create a non connected client. * This is useful since all the commands needs to be executed * in the context of a client. When commands are executed in other * contexts (for instance a Lua script) we need a non connected client. */ if (fd != -1) { anetNonBlock(NULL,fd); anetEnableTcpNoDelay(NULL,fd); if (server.tcpkeepalive) anetKeepAlive(NULL,fd,server.tcpkeepalive); if (aeCreateFileEvent(server.el,fd,AE_READABLE, readQueryFromClient, c) == AE_ERR) { close(fd); zfree(c); return NULL; } } selectDb(c,0); uint64_t client_id; atomicGetIncr(server.next_client_id,client_id,1); c->id = client_id; c->fd = fd; c->name = NULL; c->bufpos = 0; c->querybuf = sdsempty(); c->pending_querybuf = sdsempty(); c->querybuf_peak = 0; c->reqtype = 0; c->argc = 0; c->argv = NULL; c->cmd = c->lastcmd = NULL; c->multibulklen = 0; c->bulklen = -1; c->sentlen = 0; c->flags = 0; c->ctime = c->lastinteraction = server.unixtime; c->authenticated = 0; c->replstate = REPL_STATE_NONE; c->repl_put_online_on_ack = 0; c->reploff = 0; c->read_reploff = 0; c->repl_ack_off = 0; c->repl_ack_time = 0; c->slave_listening_port = 0; c->slave_ip[0] = \'\\0\'; c->slave_capa = SLAVE_CAPA_NONE; c->reply = listCreate(); c->reply_bytes = 0; c->obuf_soft_limit_reached_time = 0; listSetFreeMethod(c->reply,freeClientReplyValue); listSetDupMethod(c->reply,dupClientReplyValue); c->btype = BLOCKED_NONE; c->bpop.timeout = 0; c->bpop.keys = dictCreate(&objectKeyPointerValueDictType,NULL); c->bpop.target = NULL; c->bpop.numreplicas = 0; c->bpop.reploffset = 0; c->woff = 0; c->watched_keys = listCreate(); c->pubsub_channels = dictCreate(&objectKeyPointerValueDictType,NULL); c->pubsub_patterns = listCreate(); c->peerid = NULL; listSetFreeMethod(c->pubsub_patterns,decrRefCountVoid); listSetMatchMethod(c->pubsub_patterns,listMatchObjects); if (fd != -1) listAddNodeTail(server.clients,c); initClientMultiState(c); return c; }
以上是关于第09课:实战Redis网络通信模块源码分析的主要内容,如果未能解决你的问题,请参考以下文章
千里马Android Framework实战开发-Binder通信之startActivity跨进程源码分析
千里马Android Framework实战开发-Binder通信之startActivity跨进程源码分析
千里马Android Framework实战开发-Binder通信之startActivity跨进程源码分析