二叉树详解及二叉树的前序中序后序遍历(递归和非递归)
Posted wanglelelihuanhuan
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉树详解及二叉树的前序中序后序遍历(递归和非递归)相关的知识,希望对你有一定的参考价值。
介绍二叉树之前先介绍一下树相关的概念。
树的定义:树是n(n>=0)个有限个数据的元素集合,形状像一颗倒过来的树。![](https://image.cha138.com/20230220/178092f17a7049ca8c9dbb7e9430232c.jpg)
树的存储结构:
struct TreeNode
int _data;//节点值
TreeNode* _firstChild;//左孩子
TreeNode* _nextSlbling;//右兄弟
;
树的应用:文件系统---目录树
介绍完树,接下来介绍二叉树。
二叉树定义:二叉树是一棵特殊的树,二叉树每个节点最多有两个孩子结点,分别称为左孩子和右孩子。
二叉树类型:
(1)完全二叉树——若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。 (2)满二叉树——高度为N的满二叉树有2^N - 1个节点的二叉树。![](https://image.cha138.com/20230220/e30d3e4ae9574c9e881e08488702646d.jpg)
![](https://image.cha138.com/20230220/55c986c5bd594dc29ef41145a0412dae.jpg)
template <class T>
struct BinaryTreeNode
T _value;//节点值
BinaryTreeNode<T> *_left;//左孩子
BinaryTreeNode<T> *_right;//右孩子
BinaryTreeNode(const T& value)
:_value(value)
, _left(NULL)
, _right(NULL)
;
二叉树性质: (1) 在非空二叉树中,第 i 层的结点总数不超过
![](https://image.cha138.com/20230220/bd9937bbf9e64b0ca0b78bc78366fd92.jpg)
![](https://image.cha138.com/20230220/b5a3660cb64548548a046a61b5322250.jpg)
![](https://image.cha138.com/20230220/13a2e4c7d9e64fd59f2d62cc1a5a0bf1.jpg)
void PrevOrder_NonR() //前序遍历(非递归)
stack<BinaryTreeNode<T>* > s;
if (_root)
s.push(_root);
while (!s.empty())
BinaryTreeNode<T>* top = s.top();
cout << top->_value << " ";
s.pop();
if (top->_right)
s.push(top->_right);
if (top->_left)
s.push(top->_left);
cout << endl;
中序遍历: (1)中序访问左子树;(2)访问根节点; (3)中序访问右子树; 1、递归中序遍历:(1)递归遍历左子树(2)访问节点(3)递归遍历右子树 2、非递归中序遍历:通过栈实现。 如果根节点不为空,cur指向根节点,压所有左路节点,访问栈顶(最左节点),如果最左节点的右子树不为空,cur指向最左节点的右子树,如果最左节点的右子树不为空,压它的所有左路节点,如果最左节点的右子树为空,访问最左节点的根节点。
void InOrder_NonR() //中序遍历(非递归)
stack<BinaryTreeNode<T>* > s;
BinaryTreeNode<T>* cur = _root;
while (cur || !s.empty())
//左节点都入栈
while (cur)
s.push(cur);
cur = cur->_left;
if (!s.empty())
BinaryTreeNode<T>* top = s.top();
cout << top->_value << " ";
s.pop();
if (top->_right)
cur = top->_right;
cout << endl;
</span>
后序遍历(后根遍历):(1)后序访问左子树;(2)后序访问右子树;(3)访问根节点; 1、递归后序遍历 (1)递归遍历左子树(2)递归遍历右子树 (3)访问节点 2、非递归后序遍历:通过栈实现。
void PostOrder_NonR() //后序遍历(非递归)
stack<BinaryTreeNode<T>* > s;
BinaryTreeNode<T>* cur = _root;
BinaryTreeNode<T>* vistedNode = NULL;
while (cur || !s.empty())
while (cur)
s.push(cur);
cur = cur->_left;
// 右为空或者右节点等于上一个访问的节点时,表示左右子树均已访问
BinaryTreeNode<T>* top = s.top();
if (top->_right == NULL || top->_right == vistedNode)
s.pop();
cout << top->_value << " ";
vistedNode = top;
else
cur = top->_right;
cout << endl;
层序遍历: (1)一层层节点依次遍历。 通过队列实现
如果根节点不为空,根节点入队列,判断队列不为空,根节点出队列,如果根节点的左子树和右子树不为空,根节点的左子树和右子树入队列,再访问。
void _LevelOrder(BinaryTreeNode<T>* root)
queue<BinaryTreeNode<T>* > q;
if (root)
q.push(root);
while (!q.empty())
BinaryTreeNode<T>* front = q.front();
cout << front->_value << " ";
q.pop();
if (front->_left)
q.push(front->_left);
if (front->_right)
q.push(front->_right);
完整代码:
#include<iostream>
#include<stack>
#include<queue>
using namespace std;
template <class T>
struct BinaryTreeNode
T _value;//节点值
BinaryTreeNode<T> *_left;//左孩子
BinaryTreeNode<T> *_right;//右孩子
BinaryTreeNode(const T& value)
:_value(value)
, _left(NULL)
, _right(NULL)
;
template <class T>
class BinaryTree
public:
BinaryTree()
:_root(NULL)
BinaryTree(char *str)
_CreateTree(_root,str);
BinaryTree(BinaryTree<T>& t)
_root = _CopyTree(t._root);
/*BinaryTree& operator=(BinaryTree<T>& t)
if (this != &t)
_Destroy(t._root);
_CopyTree(t._root);
return *this;
*/
BinaryTree& operator=(BinaryTree<T> t)
swap(_root, t._root);
return *this;
~BinaryTree()
_DestoryTree(_root);
void _CreateTree(BinaryTreeNode<T>*& root,char*& str)
if (*str != '#'&&*str != '\\0')
root = new BinaryTreeNode<T>(*str);
_CreateTree(root->_left,++str);
if (*str == '\\0')
return;
_CreateTree(root->_right, ++str);
void PrevOrder_NonR() //前序遍历(非递归)
stack<BinaryTreeNode<T>* > s;
if (_root)
s.push(_root);
while (!s.empty())
BinaryTreeNode<T>* top = s.top();
cout << top->_value << " ";
s.pop();
if (top->_right)
s.push(top->_right);
if (top->_left)
s.push(top->_left);
cout << endl;
void InOrder_NonR() //中序遍历(非递归)
stack<BinaryTreeNode<T>* > s;
BinaryTreeNode<T>* cur = _root;
while (cur || !s.empty())
//左节点都入栈
while (cur)
s.push(cur);
cur = cur->_left;
if (!s.empty())
BinaryTreeNode<T>* top = s.top();
cout << top->_value << " ";
s.pop();
if (top->_right)
cur = top->_right;
cout << endl;
void PostOrder_NonR() //后序遍历(非递归)
stack<BinaryTreeNode<T>* > s;
BinaryTreeNode<T>* cur = _root;
BinaryTreeNode<T>* vistedNode = NULL;
while (cur || !s.empty())
while (cur)
s.push(cur);
cur = cur->_left;
// 右为空或者右节点等于上一个访问的节点时,表示左右子树均已访问
BinaryTreeNode<T>* top = s.top();
if (top->_right == NULL || top->_right == vistedNode)
s.pop();
cout << top->_value << " ";
vistedNode = top;
else
cur = top->_right;
cout << endl;
void Size()//节点个数
_Size(_root);
void LeafNodeNum()//叶子节点个数
_LeafNodeNum(_root);
void Depth() //深度
_Depth(_root);
void KLevelNodeNum()//第K层节点个数
_KLevelNodeNum(_root);
void PrevOrder()//递归前序
_PrevOrder(_root);
cout << endl;
void InOrder()//递归中序
_InOrder(_root);
cout << endl;
void PostOrder()//递归后序
_PostOrder(_root);
cout << endl;
void LevelOrder() //层序遍历
_LevelOrder(_root);
cout << endl;
protected:
void _DestoryTree(BinaryTreeNode<T>* root)
if (root)
_DestoryTree(root->_left);
_DestoryTree(root->_right);
delete root;
root = NULL;
BinaryTreeNode<T>* _CopyTree(BinaryTreeNode<T>* root)
BinaryTreeNode<T>* copyRoot = NULL;
if (root)
copyRoot = new BinaryTreeNode<T>(root->_value);
copyRoot->_left = _CopyTree(root->_left);
copyRoot->_right = _CopyTree(root->_right);
return copyRoot;
int _Size(BinaryTreeNode<T>* root)
if (root == NULL)
return 0;
if (root->_left == NULL&&root->_right == NULL)
return 1;
else
return 1 + _Size(root->left) + _Size(root->_right);
int _LeafNodeNum(BinaryTreeNode<T>* root)
if (root == NULL)
return 0;
else if (root->_left == NULL&&root->_right == NULL)
return 1;
else
int leftNum = _LeafNodeNum(root->_left);
int rightNum = _LeafNodeNum(root->_right);
return (leftNum + rightNum);
int _Depth(BinaryTreeNode<T>* root)
if (root == NULL)
return 0;
int leftDepth = _Depth(root->_left);
int rightDepth = _Depth(root->_right);
return 1 + (leftDepth > rightDepth ? leftDepth : rightDepth);
void _KLevelNodeNum(BinaryTreeNode<T>* root,int k)
if (root == NULL || k < 1)
return 0;
else if (k == 1)
return 1;
else
int leftNum = _LeafNodeNum(root->_left,k-1);// 左子树中k-1层的节点个数
int rightNum = _LeafNodeNum(root->_right,k-1);// 右子树中k-1层的节点个数
return (leftNum + rightNum);
void _PrevOrder(BinaryTreeNode<T>* root)
if (root)
cout << root->_value << " ";
if (root->_left)
_PrevOrder(root->_left);
if (root->_right)
_PrevOrder(root->_right);
void _InOrder(BinaryTreeNode<T>* root)
if (root)
if (root->_left)
_InOrder(root->_left);
cout << root->_value << " ";
if (root->_right)
_InOrder(root->_right);
void _PostOrder(BinaryTreeNode<T>* root)
if (root)
if (root->_left)
_PostOrder(root->_left);
if (root->_right)
_PostOrder(root->_right);
cout << root->_value << " ";
void _LevelOrder(BinaryTreeNode<T>* root)
queue<BinaryTreeNode<T>* > q;
if (root)
q.push(root);
while (!q.empty())
BinaryTreeNode<T>* front = q.front();
cout << front->_value << " ";
q.pop();
if (front->_left)
q.push(front->_left);
if (front->_right)
q.push(front->_right);
private:
BinaryTreeNode<T> *_root;
;
int main()
char* str = "12#3##45#6#7##8";
BinaryTree<char> bt1(str);
bt1.PrevOrder();
bt1.PrevOrder_NonR();
bt1.InOrder();
bt1.InOrder_NonR();
bt1.PostOrder();
bt1.PostOrder_NonR();
bt1.LevelOrder();
//cout<<"Size:"<<bt1.Size()<<endl;
//cout<<"Depth:"<<bt1.Depth()<<endl;
BinaryTree<char> bt2(bt1);
bt2.PrevOrder_NonR();
BinaryTree<char> bt3;
bt3 = bt1;
bt3.PrevOrder_NonR();
return 0;
以上是关于二叉树详解及二叉树的前序中序后序遍历(递归和非递归)的主要内容,如果未能解决你的问题,请参考以下文章