hadoop生态搭建(3节点)-17.sqoop配置_单节点

Posted zcf5522

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hadoop生态搭建(3节点)-17.sqoop配置_单节点相关的知识,希望对你有一定的参考价值。

# ==================================================================安装 sqoop

tar -zxvf ~/sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz
mv ~/sqoop-1.4.7.bin__hadoop-2.6.0 /usr/local/sqoop-1.4.7

# 环境变量

# ==================================================================node1

vi /etc/profile

# 在export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL下添加

export JAVA_HOME=/usr/java/jdk1.8.0_111
export JRE_HOME=/usr/java/jdk1.8.0_111/jre
export ZOOKEEPER_HOME=/usr/local/zookeeper-3.4.12
export HADOOP_HOME=/usr/local/hadoop-2.7.6
export mysql_HOME=/usr/local/mysql
export HBASE_HOME=/usr/local/hbase-1.2.4
export HIVE_HOME=/usr/local/hive-2.1.1
export SCALA_HOME=/usr/local/scala-2.12.4
export KAFKA_HOME=/usr/local/kafka_2.12-0.10.2.1
export FLUME_HOME=/usr/local/flume-1.8.0
export SPARK_HOME=/usr/local/spark-2.3.0
export STORM_HOME=/usr/local/storm-1.1.0
export REDIS_HOME=/usr/local/redis-4.0.2
export ERLANG_HOME=/usr/local/erlang
export RABBITMQ_HOME=/usr/local/rabbitmq_server-3.7.5
export MONGODB_HOME=/usr/local/mongodb-3.4.5
export nginx_HOME=/usr/local/nginx
export CATALINA_BASE=/usr/local/tomcat
export CATALINA_HOME=/usr/local/tomcat
export TOMCAT_HOME=/usr/local/tomcat
export KEEPALIVED_HOME=/usr/local/keepalived
export ELASTICSEARCH_HOME=/usr/local/elasticsearch-6.2.4
export LOGSTASH_HOME=/usr/local/logstash-6.2.4
export KIBANA_HOME=/usr/local/kibana-6.2.4
export SQOOP_HOME=/usr/local/sqoop-1.4.7

export PATH=$PATH:$JAVA_HOME/bin:$JAVA_HOME/jre/bin:$ZOOKEEPER_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$MYSQL_HOME/bin:$HBASE_HOME/bin:$HIVE_HOME/bin:$SCALA_HOME/bin:$KAFKA_HOME/bin:$FLUME_HOME/bin:$SPARK_HOME/bin:$STORM_HOME/bin:$REDIS_HOME/bin:$ERLANG_HOME/bin:$RABBITMQ_HOME/ebin:$RABBITMQ_HOME/sbin:$MONGODB_HOME/bin:$NGINX_HOME/sbin:$CATALINA_HOME/bin:$KEEPALIVED_HOME/sbin:$ELASTICSEARCH_HOME/bin:$LOGSTASH_HOME/bin:$KIBANA_HOME/bin:$SQOOP_HOME/bin
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

export HADOOP_INSTALL=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
# 使环境变量生效
source /etc/profile


# 查看配置结果
echo $SQOOP_HOME
cp -a $SQOOP_HOME/conf/sqoop-env-template.sh $SQOOP_HOME/conf/sqoop-env.sh 
vi $SQOOP_HOME/conf/sqoop-env.sh 

#Set path to where bin/hadoop is available
export HADOOP_COMMON_HOME=${HADOOP_HOME}

#Set path to where hadoop-*-core.jar is available
export HADOOP_MAPRED_HOME=${HADOOP_HOME}

#set the path to where bin/hbase is available
#export HBASE_HOME=${HBASE_HOME}

#Set the path to where bin/hive is available
export HIVE_HOME=${HIVE_HOME}

#Set the path for where zookeper config dir is
#export ZOOCFGDIR=


cp -a ~/mysql-connector-java-5.1.46.jar $SQOOP_HOME/lib/
cp -a $HIVE_HOME/lib/hive-exec-2.1.1.jar $SQOOP_HOME/lib/


sqoop-version
mysql -u root -p

> create database sqooptest character set utf8 ;
> create user ‘sqoop‘@‘%‘ identified by ‘Sqoop-123‘;
> grant all privileges on *.* to ‘sqoop‘@‘%‘;
> flush privileges;

> show databases;

> quit;

 # 用户 sqoop 登录 mysql

mysql -u sqoop -p

Enter password: Sqoop-123

> use sqooptest;

> create table emp(id INT NOT NULL PRIMARY KEY, name VARCHAR(20), age INT);
		
> insert into emp(id, name, age)values(1, ‘zhangsan‘, 11);
  insert into emp(id, name, age)values(2, ‘lisi‘, 12);
  insert into emp(id, name, age)values(3, ‘王五‘, 13);


> create table emp_add(id INT NOT NULL PRIMARY KEY, name VARCHAR(20), age INT, sex VARCHAR(20));

> insert into emp_add(id, name, age, sex)values(1, ‘zhangsan‘, 11, ‘男‘);
  insert into emp_add(id, name, age, sex)values(2, ‘lisi‘, 12, ‘男‘);
  insert into emp_add(id, name, age, sex)values(3, ‘王五‘, 13, ‘女‘);
  insert into emp_add(id, name, age, sex)values(4,‘liuliu‘, 11, ‘男‘);


> show tables;

> select * from emp;
  select * from emp_add;

> quit;

# 启动 hadoop

# ==================================================================node1 node2 node3
zkServer.sh start


# ==================================================================node1
# 启动hadoop所有进程
$HADOOP_HOME/sbin/start-all.sh

$HADOOP_HOME/sbin/hadoop-daemon.sh start zkfc


# ==================================================================node2
$HADOOP_HOME/sbin/yarn-daemon.sh start resourcemanager
$HADOOP_HOME/sbin/hadoop-daemon.sh start zkfc


hadoop dfsadmin -safemode get

# 命令强制离开
# hadoop dfsadmin -safemode leave


# 网页访问
# http://node1:50070?user.name=hadoop
# http://node2:50070?user.name=hadoop
# http://node1:8088?user.name=hadoop/cluster/nodes

# 导入表数据到HDFS

# ==================================================================node1

sqoop import   --connect jdbc:mysql://node1:3306/sqooptest   --username sqoop   --password Sqoop-123   --table emp   --m 1

# 如果包下面的错误请将 $HADOOP_HOME/etc/hadoop/yarn-site.xml 文件进行调整
# ERROR tool.ImportTool: Import failed: java.io.IOException: org.apache.hadoop.yarn.exceptions.InvalidResourceRequestException:
# Invalid resource request, requested memory < 0, or requested memory > max configured, requestedMemory=1536, maxMemory=1024

# ==================================================================node1 node2 node3
vi $HADOOP_HOME/etc/hadoop/yarn-site.xml

<property>
	<name>yarn.nodemanager.resource.memory-mb</name>
	<value>2048</value>
</property>
<property>
	<name>yarn.scheduler.maximum-allocation-mb</name>
	<value>2048</value>
</property>

# 重启Yarn

# ==================================================================node1
$HADOOP_HOME/sbin/start-yarn.sh
# 导入表数据到HDFS
sqoop import   --connect jdbc:mysql://node1:3306/sqooptest   --username sqoop   --password Sqoop-123   --table emp   --m 1


# 查看导入的数据
hadoop fs -ls /user/root/emp

hadoop fs -cat /user/root/emp/part-m-00000


# 导入表到HDFS指定目录
sqoop import --connect jdbc:mysql://node1:3306/sqooptest   --username sqoop --password Sqoop-123   --target-dir /sqooptest/table_emp/queryresult   --table emp --num-mappers 1


# 查看导入的数据
hadoop fs -ls /sqooptest/table_emp/queryresult

hadoop fs -cat /sqooptest/table_emp/queryresult/part-m-00000

 

# 导入关系表到HIVE

sqoop import --connect jdbc:mysql://node1:3306/sqooptest   --username sqoop --password Sqoop-123   --table emp --hive-import   --num-mappers 1

# 如报下面的错误,请先删除 /user/root/emp

# ERROR tool.ImportTool: Import failed: org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://appcluster/user/root/emp already exists

hadoop fs -rmr /user/root/emp

# 重新导入关系表到HIVE

sqoop import --connect jdbc:mysql://node1:3306/sqooptest   --username sqoop --password Sqoop-123   --table emp --hive-import   --num-mappers 1

# 启动 hive

hive
# 查看导入的数据
> show tables;

> select * from emp;

# 导入表到HIVE指定库指定表

sqoop import --connect jdbc:mysql://node1:3306/sqooptest   --username sqoop --password Sqoop-123   --table emp   --delete-target-dir   --fields-terminated-by ‘	‘   --hive-import   --hive-database sqooptest   --hive-table hive_emp   --num-mappers 1 

# 报错 hive的库sqooptest,必须先建立。否则会报:FAILED: SemanticException [Error 10072]: Database does not exist: sqooptest

> create database sqooptest;

> show databases;

# 导入表到HIVE指定库指定表

sqoop import --connect jdbc:mysql://node1:3306/sqooptest   --username sqoop --password Sqoop-123   --table emp   --delete-target-dir   --fields-terminated-by ‘	‘   --hive-import   --hive-database sqooptest   --hive-table hive_emp   --num-mappers 1

  
> use sqooptest;

> show tables;

> select * from hive_emp;

# 导入表数据子集 where子句的导入

sqoop import --connect jdbc:mysql://node1:3306/sqooptest   --username sqoop --password Sqoop-123   --table emp_add   --where "age =11"   --target-dir /sqooptest/table_emp/queryresult2   --num-mappers 1


# 查看导入的数据
hadoop fs -ls /sqooptest/table_emp/queryresult2
 
hadoop fs -cat /sqooptest/table_emp/queryresult2/part-m-00000

# query按需导入

sqoop import --connect jdbc:mysql://node1:3306/sqooptest   --username sqoop --password Sqoop-123   --query ‘select id,name,age from emp WHERE  id>=2 and $CONDITIONS‘   --split-by id   --fields-terminated-by ‘	‘   --target-dir /sqooptest/table_emp/queryresult3   --num-mappers 1


# 查看导入的数据
hadoop fs -cat /sqooptest/table_emp/queryresult3/part-m-00000

# 增量导入

sqoop import --connect jdbc:mysql://node1:3306/sqooptest   --username sqoop --password Sqoop-123   --table emp   --incremental append   --check-column id   --last-value 2   --fields-terminated-by ‘	‘   --target-dir /sqooptest/table_emp/queryresult4   --num-mappers 1
  

# 查看导入的数据
hadoop fs -ls /sqooptest/table_emp/queryresult4/

hadoop fs -cat /sqooptest/table_emp/queryresult4/part-m-00000

 

# Sqoop的数据导出

# 查看 hdfs 数据

hadoop fs -ls /sqooptest/table_emp/queryresult
hadoop fs -cat /sqooptest/table_emp/queryresult/part-m-00000

# 1、首先需要手动创建mysql中的目标表

mysql -u sqoop -p

Enter password: Sqoop-123

> use sqooptest;

> CREATE TABLE employee(id INT NOT NULL PRIMARY KEY,name VARCHAR(20),age INT);

> show tables;

> select * from employee;

# 2、然后执行导出命令

sqoop export   --connect jdbc:mysql://node1:3306/sqooptest   --username sqoop --password Sqoop-123   --table employee   --export-dir /sqooptest/table_emp/queryresult/


# 验证表mysql命令行
> select * from employee;

> quit;

shutdown -h now
# sqoop

 




以上是关于hadoop生态搭建(3节点)-17.sqoop配置_单节点的主要内容,如果未能解决你的问题,请参考以下文章

hadoop生态搭建(3节点)

hadoop生态搭建(3节点)-05.mysql配置_单节点

hadoop生态搭建(3节点)-12.rabbitmq配置

hadoop生态搭建(3节点)-01.基础配置

hadoop生态搭建(3节点)-03.zookeeper配置

hadoop生态搭建(3节点)-13.mongodb配置