Hadoop-mapreduce 程序在windows上执行需要注意的问题

Posted 随笔`

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop-mapreduce 程序在windows上执行需要注意的问题相关的知识,希望对你有一定的参考价值。

1.在主程序中需要添加这几个参数配置

Configuration conf = new Configuration();
        // 1、设置job运行时要访问的默认文件系统
        conf.set("fs.defaultFS", HADOOP_ROOT_PATH);
        // 2、设置job提交到哪去运行
        conf.set("yarn.resourcemanager.hostname", "hadoop1");
        conf.set("mapreduce.framework.name", "yarn"); 
        // 3、如果要从windows系统上运行这个job提交客户端程序,则需要加这个跨平台提交的参数
        conf.set("mapreduce.app-submission.cross-platform", "true");

        Job job = Job.getInstance(conf);

        // 1、封装参数:jar包所在的位置
        job.setJar("D:\HadoopStudy\Workspace\hdfs24\hdfs24_fat.jar");
        //job.setJarByClass(WordCountMain.class);

        // 2、封装参数: 本次job所要调用的Mapper实现类、Reducer实现类
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordcountReducer.class);

        // 3、封装参数:本次job的Mapper实现类、Reducer实现类产生的结果数据的key、value类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        // 4、封装参数:本次job要处理的输入数据集所在路径、最终结果的输出路径
        Path output = new Path(HADOOP_OUTPUT_PATH);
        FileSystem fs = FileSystem.get(new URI(HADOOP_ROOT_PATH), conf);
        if (fs.exists(output)) {
            fs.delete(output, true);
        }
        FileInputFormat.setInputPaths(job, new Path(HADOOP_INPUT_PATH));
        FileOutputFormat.setOutputPath(job, output); // 注意:输出路径必须不存在

        // 5、封装参数:想要启动的reduce task的数量
        job.setNumReduceTasks(2);

        // 6、提交job给yarn
        boolean res = job.waitForCompletion(true);
        System.out.println("OK");
        System.exit(res ? 0 : -1);

2.需要配置window中的hosts 文件(识别yarn程序配置的主机ip:我在yarn程序中配置的是hadoop1)

修改打  C盘 ->  Windows -> System32 -> drives -> etc -> hosts文件

在最下面  增加一行 

10.1.7.96 hadoop1

如果没有会报以下错误:

Exception in thread "main" java.net.UnknownHostException: Invalid host name: local host is: (unknown); destination host is: "hadoop1":8032; java.net.UnknownHostException; For more details see:  http://wiki.apache.org/hadoop/UnknownHost
    at sun.reflect.GeneratedConstructorAccessor5.newInstance(Unknown Source)
    at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
    at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
    at org.apache.hadoop.net.NetUtils.wrapWithMessage(NetUtils.java:801)
    at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:744)
    at org.apache.hadoop.ipc.Client$Connection.<init>(Client.java:445)
    at org.apache.hadoop.ipc.Client.getConnection(Client.java:1522)
    at org.apache.hadoop.ipc.Client.call(Client.java:1373)
    at org.apache.hadoop.ipc.Client.call(Client.java:1337)
    at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:227)
    at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:116)
    at com.sun.proxy.$Proxy13.getNewApplication(Unknown Source)
    at org.apache.hadoop.yarn.api.impl.pb.client.ApplicationClientProtocolPBClientImpl.getNewApplication(ApplicationClientProtocolPBClientImpl.java:217)
    at sun.reflect.GeneratedMethodAccessor3.invoke(Unknown Source)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:398)
    at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeMethod(RetryInvocationHandler.java:163)
    at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invoke(RetryInvocationHandler.java:155)
    at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeOnce(RetryInvocationHandler.java:95)
    at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:335)
    at com.sun.proxy.$Proxy14.getNewApplication(Unknown Source)
    at org.apache.hadoop.yarn.cl

 

以上是关于Hadoop-mapreduce 程序在windows上执行需要注意的问题的主要内容,如果未能解决你的问题,请参考以下文章

hadoop-MapReduce概述

大数据-hadoop-MapReduce计算流程

Hadoop-MapReduce

hadoop-mapreduce--统计单词数量

hadoop-mapreduce中reducetask执行分析

Hadoop-MapReduce