大数据处理框架之Strom:kafka storm 整合

Posted cac2020

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据处理框架之Strom:kafka storm 整合相关的知识,希望对你有一定的参考价值。

storm 使用kafka做数据源,还可以把使用netty.

新建一个maven 工程:

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>

  <groupId>storm06</groupId>
  <artifactId>storm06</artifactId>
  <version>0.0.1-SNAPSHOT</version>
  <packaging>jar</packaging>

  <name>storm07</name>
  <url>http://maven.apache.org</url>
  <repositories>
        <!-- Repository where we can found the storm dependencies  -->
        <repository>
            <id>clojars.org</id>
            <url>http://clojars.org/repo</url>
        </repository>
  </repositories>
  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
  </properties>
  <dependencies>
    <dependency>
        <groupId>org.apache.storm</groupId>
        <artifactId>storm-core</artifactId>
        <version>0.9.2-incubating</version>
    </dependency>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.11</version>
      <scope>test</scope>
    </dependency>
     <dependency>  
        <groupId>org.apache.kafka</groupId>  
        <artifactId>kafka_2.10</artifactId>  
        <version>0.9.0.1</version>  
        <exclusions>
            <exclusion>
                <groupId>com.sun.jdmk</groupId>
                <artifactId>jmxtools</artifactId>
            </exclusion>
            <exclusion>
                <groupId>com.sun.jmx</groupId>
                <artifactId>jmxri</artifactId>
            </exclusion>
        </exclusions>
    </dependency>  
    <dependency>
        <groupId>org.apache.logging.log4j</groupId>
        <artifactId>log4j-slf4j-impl</artifactId>
        <version>2.0-beta9</version>
    </dependency>
    <dependency>
        <groupId>org.apache.logging.log4j</groupId>
        <artifactId>log4j-1.2-api</artifactId>
        <version>2.0-beta9</version>
    </dependency>    
    <dependency>
        <groupId>org.slf4j</groupId>
        <artifactId>log4j-over-slf4j</artifactId>
        <version>1.7.10</version>
    </dependency>
    <dependency>
        <groupId>org.slf4j</groupId>
        <artifactId>slf4j-log4j12</artifactId>
        <version>1.7.10</version>
    </dependency>   
    <!-- storm & kafka sqout -->
    <dependency>
        <groupId>net.wurstmeister.storm</groupId>
        <artifactId>storm-kafka-0.8-plus</artifactId>
        <version>0.4.0</version>
    </dependency>
    <dependency>
        <groupId>commons-collections</groupId>
        <artifactId>commons-collections</artifactId>
        <version>3.2.1</version>
    </dependency>
    <dependency>
        <groupId>com.google.guava</groupId>
        <artifactId>guava</artifactId>
        <version>15.0</version>
    </dependency>                    
  </dependencies>
    <build>
    <finalName>storm06</finalName>
   <plugins>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-war-plugin</artifactId>
            <version>2.4</version>
        </plugin>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-compiler-plugin</artifactId>
            <version>2.1</version>
            <configuration>
                <source>1.7</source>
                <target>1.7</target>
            </configuration>
        </plugin>
        <!-- 单元测试 -->
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-surefire-plugin</artifactId>
            <configuration>
                <skip>true</skip>
                <includes>
                    <include>**/*Test*.java</include>
                </includes>
            </configuration>
        </plugin>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-source-plugin</artifactId>
            <version>2.1.2</version>
            <executions>
                <!-- 绑定到特定的生命周期之后,运行maven-source-pluin 运行目标为jar-no-fork -->
                <execution>
                    <phase>package</phase>
                    <goals>
                        <goal>jar-no-fork</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>    
    </plugins>    
  </build>
</project>

KafkaTopology

package bhz.storm.kafka.example;

import storm.kafka.KafkaSpout;
import storm.kafka.SpoutConfig;
import storm.kafka.StringScheme;
import storm.kafka.ZkHosts;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.spout.SchemeAsMultiScheme;
import backtype.storm.topology.TopologyBuilder;

public class KafkaTopology {
    public static void main(String[] args) throws
        AlreadyAliveException, InvalidTopologyException {
        // zookeeper hosts for the Kafka cluster
        ZkHosts zkHosts = new ZkHosts("134.32.123.101:2181,134.32.123.102:2181,134.32.123.103:2181");

        // Create the KafkaSpout configuartion
        // Second argument is the topic name
        // Third argument is the zookeeper root for Kafka
        // Fourth argument is consumer group id
        SpoutConfig kafkaConfig = new SpoutConfig(zkHosts,"words_topic", "", "id7");

        // Specify that the kafka messages are String
        kafkaConfig.scheme = new SchemeAsMultiScheme(new StringScheme());

        // We want to consume all the first messages in the topic everytime
        // we run the topology to help in debugging. In production, this
        // property should be false
        kafkaConfig.forceFromStart = true;

        // Now we create the topology
        TopologyBuilder builder = new TopologyBuilder();

        // set the kafka spout class
        builder.setSpout("KafkaSpout", new KafkaSpout(kafkaConfig), 1);

        // configure the bolts
        builder.setBolt("SentenceBolt", new SentenceBolt(), 1).globalGrouping("KafkaSpout");
        builder.setBolt("PrinterBolt", new PrinterBolt(), 1).globalGrouping("SentenceBolt");


        // create an instance of LocalCluster class for executing topology in local mode.
        LocalCluster cluster = new LocalCluster();
        Config conf = new Config();

        // Submit topology for execution
        cluster.submitTopology("KafkaToplogy", conf, builder.createTopology());


        try {
            // Wait for some time before exiting
            System.out.println("Waiting to consume from kafka");
            Thread.sleep(10000);
        } catch (Exception exception) {
            System.out.println("Thread interrupted exception : " + exception);
        }

        // kill the KafkaTopology
        cluster.killTopology("KafkaToplogy");

        // shut down the storm test cluster
        cluster.shutdown();
    }
}
package bhz.storm.kafka.example;

import java.util.ArrayList;
import java.util.List;

import org.apache.commons.lang.StringUtils;

import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;

import com.google.common.collect.ImmutableList;

public class SentenceBolt extends BaseBasicBolt {

    // list used for aggregating the words
    private List<String> words = new ArrayList<String>();

    public void execute(Tuple input, BasicOutputCollector collector) {
        // Get the word from the tuple
        String word = input.getString(0);

        if(StringUtils.isBlank(word)){
            // ignore blank lines
            return;
        }

        System.out.println("Received Word:" + word);

        // add word to current list of words
        words.add(word);

        if (word.endsWith(".")) {
            // word ends with ‘.‘ which means this is the end of
            // the sentence publishes a sentence tuple
            collector.emit(ImmutableList.of(
                    (Object) StringUtils.join(words, ‘ ‘)));

            // and reset the words list.
            words.clear();
        }
    }

    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        // here we declare we will be emitting tuples with
        // a single field called "sentence"
        declarer.declare(new Fields("sentence"));
    }
}
package bhz.storm.kafka.example;

import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Tuple;

public class PrinterBolt extends BaseBasicBolt {

    public void execute(Tuple input, BasicOutputCollector collector) {
        // get the sentence from the tuple and print it
        String sentence = input.getString(0);
        System.out.println("Received Sentence:" + sentence);
    }

    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        // we don‘t emit anything
    }
}

 

以上是关于大数据处理框架之Strom:kafka storm 整合的主要内容,如果未能解决你的问题,请参考以下文章

Apache Strom 实时计算系统

Apache Strom 实时计算系统

Strom流式计算

kafka和strom集群的环境安装

strom部署问题

大数据入门第十七天——storm上游数据源 之kafka详解入门