广东工业智造大数据创新大赛
Posted hugeng007
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了广东工业智造大数据创新大赛相关的知识,希望对你有一定的参考价值。
competition questions and data
guangdong_defect_instruction_20180916.xlsx
guangdong_round1_submit_sample_20180916.csv
guangdong_round1_test_a_20180916.zip
guangdong_round1_train1_20180903.zip
Solutions
Using Kaggle cat and dog classification code,
even using there depth deeping networks ResNet50,Inception V3,
Xception to extract image features,
and using neural networkf DNN classification,
verification set shows over-fitting.Kaggle cat and dog classification
ResNet50
resnetv2-50
比赛思路
Direct image classificaton,select a network to extract features,followed by a fully connection layer classification,plus regularization to reduce over-fitting.Then let go of all levels of training.The final accuracy is about 0.92,in fact,as long as the default parameters do not depart from the spectrum on the line,adjusting the parameters does not have much impact on the results.
select a network to extract features
competition solution 2:Standard DenseNet,softmax12 classification,
made data enhancement;
tried to tune learning_rate,
batch_size,num_layers
以上是关于广东工业智造大数据创新大赛的主要内容,如果未能解决你的问题,请参考以下文章
天池广东工业智造大数据创新大赛--铝型材表面瑕疵识别 --top1方案
第13届景驰-埃森哲杯广东工业大学ACM程序设计大赛-J强迫症的序列