计算机视觉框架OpenMMLab开源学习:图像分类实战
Posted GoAI
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了计算机视觉框架OpenMMLab开源学习:图像分类实战相关的知识,希望对你有一定的参考价值。
前言:本篇主要偏向图像分类实战部分,使用MMclassification工具进行代码应用,最后对水果分类进行实战演示,本次环境和代码配置部分省略,具体内容建议参考前一篇文章:计算机视觉框架OpenMMLab开源学习(二):图像分类
计算机视觉框架OpenMMLab开源学习(三):图像分类实战
一、安装OpenMMLab v2.0
Step 1. Install MMCV
mim install "mmcv>=2.0.0rc0"
Step 2. Install MMClassification and MMDetection
mim install "mmcls>=1.0.0rc0" "mmdet>=3.0.0rc0"
代码模版讲解:
model = dict(
type='ImageClassifier', # 分类器类型
backbone=dict(
type='ResNet', # 主干网络类型
depth=50, # 主干网网络深度, ResNet 一般有18, 34, 50, 101, 152 可以选择
num_stages=4, # 主干网络状态(stages)的数目,这些状态产生的特征图作为后续的 head 的输入。
out_indices=(3, ), # 输出的特征图输出索引。越远离输入图像,索引越大
frozen_stages=-1, # 网络微调时,冻结网络的stage(训练时不执行反相传播算法),若num_stages=4,backbone包含stem 与 4 个 stages。frozen_stages为-1时,不冻结网络; 为0时,冻结 stem; 为1时,冻结 stem 和 stage1; 为4时,冻结整个backbone
style='pytorch'), # 主干网络的风格,'pytorch' 意思是步长为2的层为 3x3 卷积, 'caffe' 意思是步长为2的层为 1x1 卷积。
neck=dict(type='GlobalAveragePooling'), # 颈网络类型
head=dict(
type='LinearClsHead', # 线性分类头,
num_classes=1000, # 输出类别数,这与数据集的类别数一致
in_channels=2048, # 输入通道数,这与 neck 的输出通道一致
loss=dict(type='CrossEntropyLoss', loss_weight=1.0), # 损失函数配置信息
topk=(1, 5), # 评估指标,Top-k 准确率, 这里为 top1 与 top5 准确率
))
二、Pytorch图像分类任务
本次任务训练数据为FashionMNIST,完整代码如下:
# https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
# Training
## Construct Dataset and Dataloader
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
batch_size = 64
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
## Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
device = "cuda" if torch.cuda.is_available() else "cpu"
model = NeuralNetwork().to(device)
## Define loss function and Optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
## Inner loop for training
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Output Logs
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: loss:>7f [current:>5d/size:>5d]")
## Inner loop for test
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \\n Accuracy: (100*correct):>0.1f%, Avg loss: test_loss:>8f \\n")
## Launch training / test loops#
epochs = 5
for t in range(epochs):
print(f"Epoch t+1\\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")
## Saving Models
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
# Deployment
## Loading Models
model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))
# Predict new images
classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]
model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "predicted", Actual: "actual"')
三、利用MMClassification提供的预训练模型推理:
安装环境:
pip install openmim, mmengine
mim install mmcv-full mmcls
Inference using high-level API
from mmcls.apis import init_model, inference_model
model = init_model('mobilenet-v2_8xb32_in1k.py',
'mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth',
device='cuda:0')
load checkpoint from local path: mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth
result = inference_model(model, 'banana.png')
result
'pred_label': 954, 'pred_score': 0.9999284744262695, 'pred_class': 'banana'
from mmcls.apis import show_result_pyplot
show_result_pyplot(model, 'banana.png', result)
PyTorch codes under the hood
Let write some raw PyTorch codes to do the same thing.
These are actual codes wrapped in high-level APIs.
construct an ImageClassifier
Note: current implementation only allow configs of backbone, neck and classification head instead of Python objects.
from mmcls.models import ImageClassifier classifier = ImageClassifier( backbone=dict(type='MobileNetV2', widen_factor=1.0), neck=dict(type='GlobalAveragePooling'), head=dict( type='LinearClsHead', num_classes=1000, in_channels=1280) )
Load trained parameters
import torch ckpt = torch.load('mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth') classifier.load_state_dict(ckpt['state_dict'])
Construct data preprocessing pipeline
Important: A models work only if image preprocessing pipelines is correct.
from mmcls.datasets.pipelines import Compose test_pipeline = Compose([ dict(type='LoadImageFromFile'), dict(type='Resize', size=(256, -1), backend='pillow'), dict(type='CenterCrop', crop_size=224), dict( type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']) ])
data = dict(img_info=dict(filename='banana.png'), img_prefix=None) data = test_pipeline(data) data
'img_metas': DataContainer('filename': 'banana.png', 'ori_filename': 'banana.png', 'ori_shape': (403, 393, 3), 'img_shape': (224, 224, 3), 'img_norm_cfg': 'mean': array([123.675, 116.28 , 103.53 ], dtype=float32), 'std': array([58.395, 57.12 , 57.375], dtype=float32), 'to_rgb': True), 'img': tensor([[[ 0.3309, 0.2967, 0.3138, ..., 2.0263, 2.0092, 1.9920], [ 0.3481, 0.3309, 0.2282, ..., 2.0263, 2.0092, 1.9920], [ 0.2796, 0.2967, 0.2967, ..., 1.9920, 2.0263, 1.9749], ..., [ 0.1939, 0.1768, 0.2282, ..., 0.3994, 0.3309, 0.3823], [ 0.1426, 0.1254, 0.2111, ..., 0.5878, 0.5364, 0.5536], [-0.0116, -0.0801, 0.1597, ..., 0.5707, 0.5536, 0.5364]], [[ 0.3803, 0.3803, 0.3803, ..., 2.1660, 2.1485, 2.1134], [ 0.4153, 0.4153, 0.3102, ..., 2.1835, 2.1310, 2.1134], [ 0.3452, 0.3803, 0.3803, ..., 2.1134, 2.1485, 2.1134], ..., [ 0.2752, 0.2577, 0.3102, ..., 0.5028, 0.4328, 0.4328], [ 0.2227, 0.1877, 0.3102, ..., 0.6604, 0.6254, 0.5728], [ 0.0301, -0.0049, 0.2402, ..., 0.6604, 0.6254, 0.5728]], [[ 0.5485, 0.5485, 0.5485, ..., 2.3437, 2.3263, 2.2914], [ 0.5834, 0.5834, 0.4788, ..., 2.3611, 2.3088, 2.2914], [ 0.5136, 0.5485, 0.5485, ..., 2.3088, 2.3437, 2.3088], ..., [ 0.4091, 0.3916, 0.4439, ..., 0.5834, 0.5136, 0.5311], [ 0.3568, 0.3045, 0.4265, ..., 0.7576, 0.7228, 0.7054], [ 0.1651, 0.1128, 0.3742, ..., 0.7576, 0.7402, 0.7054]]])
equivalent in torchvision
from PIL import Image from torchvision.transforms import Compose, Resize, CenterCrop, Normalize, ToTensor tv_transform = Compose([Resize(256), CenterCrop(224), ToTensor(), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) image = Image.open('banana.png').convert('RGB') tv_data = tv_transform(image)
Forward through the model
## IMPORTANT: set the classifier to eval mode classifier.eval() imgs = data['img'].unsqueeze(0) imgs = tv_data.unsqueeze(0) with torch.no_grad(): # class probabilities prob = classifier.forward_test(imgs)[0] # features feat = classifier.extract_feat(imgs, stage='neck')[0] print(len(prob)) print(prob.argmax().item()) print(feat.shape)
1000 954 torch.Size([1, 1280])
3.使用MMClassificaiton完整进行水果分类实战:
数据集下载:
GitHub - TommyZihao/MMClassification_Tutorials: Jupyter notebook tutorials for MMClassificationJupyter notebook tutorials for MMClassification. Contribute to TommyZihao/MMClassification_Tutorials development by creating an account on GitHub.https://github.com/TommyZihao/MMClassification_Tutorials
代码框架:
def main():
model = build_classifier(cfg.model)
model.init_weights()
datasets = [build_dataset(cfg.data.train)]
train_model(
model,
datasets,
cfg,
distributed=distributed,
validate=(not args.no_validate),
timestamp=timestamp,
device=cfg.device,
meta=meta)
mmcls/apis/train_model.py
def train_model(model,
dataset,
cfg):
data_loaders = [build_dataloader(ds, **train_loader_cfg) for ds in dataset]
optimizer = build_optimizer(model, cfg.optimizer)
runner = build_runner(
cfg.runner,
default_args=dict(
model=model,
optimizer=optimizer))
runner.register_training_hooks(
cfg.lr_config,
optimizer_config,
cfg.checkpoint_config,
cfg.log_config,
cfg.get('momentum_config', None),
custom_hooks_config=cfg.get('custom_hooks', None))
runner.run(data_loaders, cfg.workflow)
mmcv/runner/epoch_based_runner.py
class EpochBasedRunner(BaseRunner):
def run_iter(self, data_batch: Any, train_mode: bool, **kwargs) -> None:
if train_mode:
outputs = self.model.train_step(data_batch, self.optimizer, **kwargs)
else:
outputs = self.model.val_step(data_batch, self.optimizer, **kwargs)
self.outputs = outputs
def train(self, data_loader, **kwargs):
self.model.train()
self.data_loader = data_loader
for i, data_batch in enumerate(self.data_loader):
self.run_iter(data_batch, train_mode=True, **kwargs)
self.call_hook('after_train_iter')
mmcls/models/classifiers/base.py
class BaseClassifier(BaseModule, metaclass=ABCMeta):
def forward(self, img, return_loss=True, **kwargs):
"""Calls either forward_train or forward_test depending on whether
return_loss=True.
Note this setting will change the expected inputs. When
`return_loss=True`, img and img_meta are single-nested (i.e. Tensor and
List[dict]), and when `resturn_loss=False`, img and img_meta should be
double nested (i.e. List[Tensor], List[List[dict]]), with the outer
list indicating test time augmentations.
"""
if return_loss:
return self.forward_train(img, **kwargs)
else:
return self.forward_test(img, **kwargs)
def train_step(self, data, optimizer=None, **kwargs):
losses = self(**data)
loss, log_vars = self._parse_losses(losses)
outputs = dict(
loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
return outputs
mmcls/models/classifiers/image.py
class ImageClassifier(BaseClassifier):
def __init__(self,
backbone,
neck=None,
head=None,
pretrained=None,
train_cfg=None,
init_cfg=None):
super(ImageClassifier, self).__init__(init_cfg)
if pretrained is not None:
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
self.backbone = build_backbone(backbone)
if neck is not None:
self.neck = build_neck(neck)
if head is not None:
self.head = build_head(head)
def extract_feat(self, img):
x = self.backbone(img)
if self.with_neck:
x = self.neck(x)
return x
def forward_train(self, img, gt_label, **kwargs):
x = self.extract_feat(img)
losses = dict()
loss = self.head.forward_train(x, gt_label)
losses.update(loss)
return losses
mmcv/runner/hooks/optimizer.py
class OptimizerHook(Hook):
def after_train_iter(self, runner):
runner.optimizer.zero_grad()
runner.outputs['loss'].backward()
runner.optimizer.step()
总结:本篇主要偏向图像分类实战部分,使用MMclassification工具进行代码应用,熟悉其框架应用,为后续处理不同场景下分类问题提供帮助。
本文参考:GitHub - wangruohui/sjtu-openmmlab-tutorial
以上是关于计算机视觉框架OpenMMLab开源学习:图像分类实战的主要内容,如果未能解决你的问题,请参考以下文章