搭建docker-spark-hadoop-hive-zeppelin分布式集群环境

Posted Fordestiny

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了搭建docker-spark-hadoop-hive-zeppelin分布式集群环境相关的知识,希望对你有一定的参考价值。

一、软件准备

1、基础docker镜像:ubuntu,目前最新的版本是18

2、需准备的环境软件包:

(1) spark-2.3.0-bin-hadoop2.7.tgz
(2) hadoop-2.7.3.tar.gz
(3) apache-hive-2.3.2-bin.tar.gz
(4) jdk-8u101-linux-x64.tar.gz
(5) mysql-5.5.45-linux2.6-x86_64.tar.gz、mysql-connector-java-5.1.37-bin.jar
(6) scala-2.11.8.tgz
(7) zeppelin-0.8.0-bin-all.tgz

二、ubuntu镜像准备

1、获取官方的镜像:

docker pull ubuntu

2、因官方镜像中的apt源是国外资源,后续扩展安装软件包时较麻烦。先修改为国内源:

(1)启动ubuntu容器,并进入容器中的apt配置目录

docker run -it -d ubuntu
docker exec -it ubuntu /bin/bash
cd /etc/apt

(2)先将原有的源文件备份:

mv sources.list sources.list.bak

 

(3)换为国内源,这里提供阿里的资源。因官方的ubuntu没有艰装vi等软件,使用echo指令写入。需注意一点,资源必须与系统版本匹配。

echo deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse  >> sources.list
echo deb http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse >> sources.list
echo deb http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse >> sources.list
echo deb http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse >> sources.list
echo deb http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse >> sources.list
echo deb-src http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse >> sources.list
echo deb-src http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse >> sources.list
echo deb-src http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse >> sources.list
echo deb-src http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse >> sources.list
echo deb-src http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse >> sources.list

3、退出容器,提交镜像

exit
docker commit 容器id ubuntu:latest

生成的ubuntu镜像,就可以做为基础镜像使用。

三、spark-hadoop集群配置

 先前所准备的一列系软件包,在构建镜像时,直接用RUN ADD指令添加到镜像中,这里先将一些必要的配置处理好。这些配置文件,都来自于各个软件包中的conf目录下。

1、Spark配置

(1)spark-env.sh

声明Spark需要的环境变量

SPARK_MASTER_WEBUI_PORT=8888

export SPARK_HOME=$SPARK_HOME
export HADOOP_HOME=$HADOOP_HOME
export MASTER=spark://hadoop-maste:7077
export SCALA_HOME=$SCALA_HOME
export SPARK_MASTER_HOST=hadoop-maste


export JAVA_HOME=/usr/local/jdk1.8.0_101

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

(2)spark-default.conf

关于spark的默认配置

spark.executor.memory=2G
spark.driver.memory=2G
spark.executor.cores=2
#spark.sql.codegen.wholeStage=false
#spark.memory.offHeap.enabled=true
#spark.memory.offHeap.size=4G
#spark.memory.fraction=0.9
#spark.memory.storageFraction=0.01
#spark.kryoserializer.buffer.max=64m
#spark.shuffle.manager=sort
#spark.sql.shuffle.partitions=600
spark.speculation=true
spark.speculation.interval=5000
spark.speculation.quantile=0.9
spark.speculation.multiplier=2
spark.default.parallelism=1000
spark.driver.maxResultSize=1g
#spark.rdd.compress=false
spark.task.maxFailures=8
spark.network.timeout=300
spark.yarn.max.executor.failures=200
spark.shuffle.service.enabled=true
spark.dynamicAllocation.enabled=true
spark.dynamicAllocation.minExecutors=4
spark.dynamicAllocation.maxExecutors=8
spark.dynamicAllocation.executorIdleTimeout=60
#spark.serializer=org.apache.spark.serializer.JavaSerializer
#spark.sql.adaptive.enabled=true
#spark.sql.adaptive.shuffle.targetPostShuffleInputSize=100000000
#spark.sql.adaptive.minNumPostShufflePartitions=1
##for spark2.0
#spark.sql.hive.verifyPartitionPath=true
#spark.sql.warehouse.dir
spark.sql.warehouse.dir=/spark/warehouse

(3)节点声明文件,包括masters文件及slaves文件

主节点声明文件:masters

hadoop-maste

从节点文件:slaves

hadoop-node1
hadoop-node2

2、Hadoop配置

(1)hadoop-env.sh

声明Hadoop需要的环境变量


export JAVA_HOME=/usr/local/jdk1.8.0_101

export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-"/etc/hadoop"}

for f in $HADOOP_HOME/contrib/capacity-scheduler/*.jar; do
  if [ "$HADOOP_CLASSPATH" ]; then
    export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$f
  else
    export HADOOP_CLASSPATH=$f
  fi
done

export HADOOP_OPTS="$HADOOP_OPTS -Djava.net.preferIPv4Stack=true"

export HADOOP_NAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS"
export HADOOP_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS $HADOOP_DATANODE_OPTS"

export HADOOP_SECONDARYNAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_SECONDARYNAMENODE_OPTS"

export HADOOP_NFS3_OPTS="$HADOOP_NFS3_OPTS"
export HADOOP_PORTMAP_OPTS="-Xmx512m $HADOOP_PORTMAP_OPTS"

export HADOOP_CLIENT_OPTS="-Xmx512m $HADOOP_CLIENT_OPTS"

export HADOOP_SECURE_DN_USER=${HADOOP_SECURE_DN_USER}

export HADOOP_SECURE_DN_LOG_DIR=${HADOOP_LOG_DIR}/${HADOOP_HDFS_USER}

export HADOOP_PID_DIR=${HADOOP_PID_DIR}
export HADOOP_SECURE_DN_PID_DIR=${HADOOP_PID_DIR}

export HADOOP_IDENT_STRING=$USER

(2)hdfs-site.xml

主要设置了Hadoop的name及data节点。name节点存储的是元数据,data存储的是数据文件

<?xml version="1.0"?>
<configuration>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:/usr/local/hadoop2.7/dfs/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:/usr/local/hadoop2.7/dfs/data</value>
    </property>
    <property>
        <name>dfs.webhdfs.enabled</name>
        <value>true</value>
    </property>
    <property>
        <name>dfs.replication</name>
        <value>2</value>
    </property>
    <property>
        <name>dfs.permissions.enabled</name>
        <value>false</value>
    </property>
 </configuration>

(3)core-site.xml

设置主节点的地址:hadoop-maste。与后面启动容器时,设置的主节点hostname要一致。

<?xml version="1.0"?>
<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://hadoop-maste:9000/</value>
    </property>
    <property>
         <name>hadoop.tmp.dir</name>
         <value>file:/usr/local/hadoop/tmp</value>
    </property>
    <property>
        <name>hadoop.proxyuser.root.hosts</name>
        <value>*</value>
    </property>
    <property>
        <name>hadoop.proxyuser.root.groups</name>
        <value>*</value>
    </property>
    <property>
        <name>hadoop.proxyuser.oozie.hosts</name>
        <value>*</value>
    </property>
    <property>
        <name>hadoop.proxyuser.oozie.groups</name>
        <value>*</value>
    </property>
</configuration>

(4)yarn-site.xml

<?xml version="1.0"?>
<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
        <value>org.apache.hadoop.mapred.ShuffleHandler</value>
    </property>
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>hadoop-maste</value>
    </property>
    <property>
        <name>yarn.resourcemanager.address</name>
        <value>hadoop-maste:8032</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address</name>
        <value>hadoop-maste:8030</value>
    </property>
    <property>
        <name>yarn.resourcemanager.resource-tracker.address</name>
        <value>hadoop-maste:8035</value>
    </property>
    <property>
        <name>yarn.resourcemanager.admin.address</name>
        <value>hadoop-maste:8033</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address</name>
        <value>hadoop-maste:8088</value>
    </property>
    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
   </property>
    <property>
       <name>yarn.nodemanager.vmem-pmem-ratio</name>
       <value>5</value>
    </property>
<property>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>22528</value>
    <discription>每个节点可用内存,单位MB</discription>
  </property>
  
  <property>
    <name>yarn.scheduler.minimum-allocation-mb</name>
    <value>4096</value>
    <discription>单个任务可申请最少内存,默认1024MB</discription>
  </property>
  
  <property>
    <name>yarn.scheduler.maximum-allocation-mb</name>
    <value>16384</value>
    <discription>单个任务可申请最大内存,默认8192MB</discription>
  </property>
</configuration>

(5)mapred-site.xml

<?xml version="1.0"?>
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.address</name>
        <!-- 配置实际的Master主机名和端口-->
        <value>hadoop-maste:10020</value>
    </property>
    <property>
        <name>mapreduce.map.memory.mb</name>
        <value>4096</value>
    </property>
    <property>
        <name>mapreduce.reduce.memory.mb</name>
        <value>8192</value>
    </property>
    <property>
      <name>yarn.app.mapreduce.am.staging-dir</name>
      <value>/stage</value>
    </property>
    <property>
      <name>mapreduce.jobhistory.done-dir</name>
      <value>/mr-history/done</value>
    </property>
    <property>
      <name>mapreduce.jobhistory.intermediate-done-dir</name>
      <value>/mr-history/tmp</value>
    </property>
</configuration>

(6)主节点声明文件:master

hadoop-maste

3、hive配置

(1)hive-site.xml

主要两个:一是hive.server2.transport.mode设为binary,使其支持JDBC连接;二是设置mysql的地址。

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
<configuration> 
        <property>
                <name>hive.metastore.warehouse.dir</name>
                <value>/home/hive/warehouse</value>
        </property>
        <property>
                <name>hive.exec.scratchdir</name>
                <value>/tmp/hive</value>
        </property>
        <property> 
                <name>hive.metastore.uris</name> 
                <value>thrift://hadoop-hive:9083</value> 
                <description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore.</description> 
        </property>
        <property>
                <name>hive.server2.transport.mode</name>
                <value>binary</value>
        </property>
        <property>
                <name>hive.server2.thrift.http.port</name>
                <value>10001</value>
        </property>
        
        <property> 
                <name>javax.jdo.option.ConnectionURL</name> 
                <value>jdbc:mysql://hadoop-mysql:3306/hive?createDatabaseIfNotExist=true</value> 
        </property> 
        <property> 
                <name>javax.jdo.option.ConnectionDriverName</name> 
                <value>com.mysql.jdbc.Driver</value> 
        </property> 
        <property> 
                <name>javax.jdo.option.ConnectionUserName</name> 
                <value>root</value> 
        </property> 
        <property> 
                <name>javax.jdo.option.ConnectionPassword</name> 
                <value>root</value> 
        </property> 
        <property> 
                <name>hive.metastore.schema.verification</name> 
                <value>false</value> 
        </property>
        <property>
               <name>hive.server2.authentication</name>
               <value>NONE</value>
        </property> 
</configuration>

4、Zeppelin配置

(1)zeppelin-env.sh

export JAVA_HOME=/usr/local/jdk1.8.0_101
export MASTER=spark://hadoop-maste:7077
export SPARK_HOME=$SPARK_HOME
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

(2)zeppelin-site.xml

http端口默认8080,这里改为18080。为方便加载第三方包,mvnRepo也改为阿里的源。

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration> <property> <name>zeppelin.server.addr</name> <value>0.0.0.0</value> <description>Server address</description> </property> <property> <name>zeppelin.server.port</name> <value>18080</value> <description>Server port.</description> </property> <property> <name>zeppelin.server.ssl.port</name> <value>18443</value> <description>Server ssl port. (used when ssl property is set to true)</description> </property> <property> <name>zeppelin.server.context.path</name> <value>/</value> <description>Context Path of the Web Application</description> </property> <property> <name>zeppelin.war.tempdir</name> <value>webapps</value> <description>Location of jetty temporary directory</description> </property> <property> <name>zeppelin.notebook.dir</name> <value>notebook</value> <description>path or URI for notebook persist</description> </property> <property> <name>zeppelin.notebook.homescreen以上是关于搭建docker-spark-hadoop-hive-zeppelin分布式集群环境的主要内容,如果未能解决你的问题,请参考以下文章

equals和hashcode

java-4

hashCode对Map的影响

Java中hashcode的计算方式

Java中hashcode的计算方式

Java中hashcode的计算方式