大数据消息队列--Kafka概括

Posted fyb-392

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据消息队列--Kafka概括相关的知识,希望对你有一定的参考价值。

1.1.2 消息队列的两种模式

1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)

消息生产者生产消息发送到Queue中,然后消息消费者从Queue中取出并且消费消息。

消息被消费以后,queue中不再有存储,所以消息消费者不可能消费到已经被消费的消息。Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。

2)发布/订阅模式(一对多,消费者消费数据之后不会清除消息)

消息生产者(发布)将消息发布到topic中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到topic的消息会被所有订阅者消费。

1.2 定义

Kafka是一个分布式的基于发布/订阅模式的消息队列,主要应用于大数据实时处理领域。

1.3 Kafka基础架构

技术图片

(1)Producer 消息生产者,就是向kafka broker发消息的客户端;

(2)Consumer 消息消费者,向kafka broker取消息的客户端;

(3)Consumer Group (CG):消费者组,由多个consumer组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。

(4)Broker 一台kafka服务器就是一个broker。一个集群由多个broker组成。一个broker可以容纳多个topic。

(5)Topic 可以理解为一个队列,生产者和消费者面向的都是一个topic;

(6)Partition为了实现扩展性,一个非常大的topic可以分布到多个broker(即服务器)上,一个topic可以分为多个partition,每个partition是一个有序的队列;

(7)Replica副本,为保证集群中的某个节点发生故障时,该节点上的partition数据不丢失,且kafka仍然能够继续工作,kafka提供了副本机制,一个topic的每个分区都有若干个副本,一个leader和若干个follower

(8)leader每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对象都是leader。

(9)follower每个分区多个副本中的“从”,实时从leader中同步数据,保持和leader数据的同步。leader发生故障时,某个follower会成为新的leader。

以上是关于大数据消息队列--Kafka概括的主要内容,如果未能解决你的问题,请参考以下文章

2021年大数据Kafka:❤️消息队列和Kafka的基本介绍❤️

2021年大数据Kafka:❤️消息队列和Kafka的基本介绍❤️

大数据场景下的消息队列:Kafka3.0快速入门

大数据场景下的消息队列:Kafka3.0快速入门

大数据场景下的消息队列:Kafka3.0快速入门

消息队列,大数据时代的神器