python 的scipy 里的 odeint 这个求微分方程的函数怎么用啊
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python 的scipy 里的 odeint 这个求微分方程的函数怎么用啊相关的知识,希望对你有一定的参考价值。
比如我要求 dy/dt=r*y*(1-y/k) y(0)=0.1
这个微分方程 程序该怎么写呢?
scipy.integrate.odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0,hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0)
实际使用中,还是主要使用前三个参数,即微分方程的描写函数、初值和需要求解函数值对应的的时间点。接收数组形式。这个函数,要求微分方程必须化为标准形式,即dy/dt=f(y,t,)。
from scipy import odeint
y = odeint(dy/dt=r*y*(1-y/k) ,y(0)=0.1,t)
对于微分方程全还给老师了,
http://hyry.dip.jp:8000/pydoc/index.html
这个地址有很多关于python做科学计算的文档,你可以去查查本回答被提问者采纳
路径关闭时如何让 SciPy.integrate.odeint 停止?
【中文标题】路径关闭时如何让 SciPy.integrate.odeint 停止?【英文标题】:How to get SciPy.integrate.odeint to stop when path is closed? 【发布时间】:2016-01-09 10:18:08 【问题描述】:编辑:五年了,SciPy.integrate.odeint
学会停止了吗?
下面的脚本使用 Python 中的 Runge-Kutta RK4 集成闭合路径周围的磁场线,并在它返回到某个容差内的原始值时停止。我想使用SciPy.integrate.odeint
,但我不知道如何告诉它在路径接近关闭时停止。
当然odeint
可能比在 Python 中集成要快得多,我可以让它盲目地四处寻找结果,但将来我会做更大的问题。
有没有一种方法可以在 odeint 中实现“OK 足够接近 - 你现在可以停下来了!”方法?或者我应该只是整合一段时间,检查,整合更多,检查......
这个discussion 似乎是相关的,并且似乎暗示“你不能来自 SciPy”可能是答案。
注意:我通常使用 RK45 (Runge-Kutta-Fehlberg),它在给定的台阶尺寸下更准确,以加快速度,但我在这里保持简单。它还使可变步长成为可能。
更新:但有时我需要固定步长。我发现Scipy.integrate.ode
确实提供了一种测试/停止方法ode.solout(t, y)
,但似乎没有能力在t
的固定点进行评估。 odeint
允许在t
的固定点进行评估,但似乎没有测试/停止方法。
def rk4Bds_stops(x, h, n, F, fclose=0.1):
h_over_two, h_over_six = h/2.0, h/6.0
watching = False
distance_max = 0.0
distance_old = -1.0
i = 0
while i < n and not (watching and greater):
k1 = F( x[i] )
k2 = F( x[i] + k1*h_over_two)
k3 = F( x[i] + k2*h_over_two)
k4 = F( x[i] + k3*h )
x[i+1] = x[i] + h_over_six * (k1 + 2.*(k2 + k3) + k4)
distance = np.sqrt(((x[i+1] - x[0])**2).sum())
distance_max = max(distance, distance_max)
getting_closer = distance < distance_old
if getting_closer and distance < fclose*distance_max:
watching = True
greater = distance > distance_old
distance_old = distance
i += 1
return i
def get_BrBztanVec(rz):
Brz = np.zeros(2)
B_zero = 0.5 * i * mu0 / a
zz = rz[1] - h
alpha = rz[0] / a
beta = zz / a
gamma = zz / rz[0]
Q = ((1.0 + alpha)**2 + beta**2)
k = np.sqrt(4. * alpha / Q)
C1 = 1.0 / (pi * np.sqrt(Q))
C2 = gamma / (pi * np.sqrt(Q))
C3 = (1.0 - alpha**2 - beta**2) / (Q - 4.0*alpha)
C4 = (1.0 + alpha**2 + beta**2) / (Q - 4.0*alpha)
E, K = spe.ellipe(k**2), spe.ellipk(k**2)
Brz[0] += B_zero * C2 * (C4*E - K)
Brz[1] += B_zero * C1 * (C3*E + K)
Bmag = np.sqrt((Brz**2).sum())
return Brz/Bmag
import numpy as np
import matplotlib.pyplot as plt
import scipy.special as spe
from scipy.integrate import odeint as ODEint
pi = np.pi
mu0 = 4.0 * pi * 1.0E-07
i = 1.0 # amperes
a = 1.0 # meters
h = 0.0 # meters
ds = 0.04 # step distance (meters)
r_list, z_list, n_list = [], [], []
dr_list, dz_list = [], []
r_try = np.linspace(0.15, 0.95, 17)
x = np.zeros((1000, 2))
nsteps = 500
for rt in r_try:
x[:] = np.nan
x[0] = np.array([rt, 0.0])
n = rk4Bds_stops(x, ds, nsteps, get_BrBztanVec)
n_list.append(n)
r, z = x[:n+1].T.copy() # make a copy is necessary
dr, dz = r[1:] - r[:-1], z[1:] - z[:-1]
r_list.append(r)
z_list.append(z)
dr_list.append(dr)
dz_list.append(dz)
plt.figure(figsize=[14, 8])
fs = 20
plt.subplot(2,3,1)
for r in r_list:
plt.plot(r)
plt.title("r", fontsize=fs)
plt.subplot(2,3,2)
for z in z_list:
plt.plot(z)
plt.title("z", fontsize=fs)
plt.subplot(2,3,3)
for r, z in zip(r_list, z_list):
plt.plot(r, z)
plt.title("r, z", fontsize=fs)
plt.subplot(2,3,4)
for dr, dz in zip(dr_list, dz_list):
plt.plot(dr, dz)
plt.title("dr, dz", fontsize=fs)
plt.subplot(2, 3, 5)
plt.plot(n_list)
plt.title("n", fontsize=fs)
plt.show()
【问题讨论】:
您现在拥有scipy.integrate.solve_ivp
,其中一种方法是 RK45(Dormand-Prince),它具有事件处理(不够灵活)和给定时间列表中的密集输出/输出插值。使用 LSODA 方法,您可以使用与 odeint 相同的积分器方法,因此从某种意义上说,它已经学会了停止。
@LutzLehmann 谢谢!对于“如何让 SciPy.integrate... 停止?”,这听起来确实是更好且可以接受的答案
【参考方案1】:
您需要的是“事件处理”。 scipy.integrate.odeint
还不能做到这一点。但是你可以使用日晷(参见https://pypi.python.org/pypi/python-sundials/0.5),它可以进行事件处理。
另一个选择,将速度作为优先事项,是在 cython 中简单地编写 rkf
。我有一个实现,它应该很容易在某些条件后停止:
cythoncode.pyx
import numpy as np
cimport numpy as np
import cython
#cython: boundscheck=False
#cython: wraparound=False
cdef double a2 = 2.500000000000000e-01 # 1/4
cdef double a3 = 3.750000000000000e-01 # 3/8
cdef double a4 = 9.230769230769231e-01 # 12/13
cdef double a5 = 1.000000000000000e+00 # 1
cdef double a6 = 5.000000000000000e-01 # 1/2
cdef double b21 = 2.500000000000000e-01 # 1/4
cdef double b31 = 9.375000000000000e-02 # 3/32
cdef double b32 = 2.812500000000000e-01 # 9/32
cdef double b41 = 8.793809740555303e-01 # 1932/2197
cdef double b42 = -3.277196176604461e+00 # -7200/2197
cdef double b43 = 3.320892125625853e+00 # 7296/2197
cdef double b51 = 2.032407407407407e+00 # 439/216
cdef double b52 = -8.000000000000000e+00 # -8
cdef double b53 = 7.173489278752436e+00 # 3680/513
cdef double b54 = -2.058966861598441e-01 # -845/4104
cdef double b61 = -2.962962962962963e-01 # -8/27
cdef double b62 = 2.000000000000000e+00 # 2
cdef double b63 = -1.381676413255361e+00 # -3544/2565
cdef double b64 = 4.529727095516569e-01 # 1859/4104
cdef double b65 = -2.750000000000000e-01 # -11/40
cdef double r1 = 2.777777777777778e-03 # 1/360
cdef double r3 = -2.994152046783626e-02 # -128/4275
cdef double r4 = -2.919989367357789e-02 # -2197/75240
cdef double r5 = 2.000000000000000e-02 # 1/50
cdef double r6 = 3.636363636363636e-02 # 2/55
cdef double c1 = 1.157407407407407e-01 # 25/216
cdef double c3 = 5.489278752436647e-01 # 1408/2565
cdef double c4 = 5.353313840155945e-01 # 2197/4104
cdef double c5 = -2.000000000000000e-01 # -1/5
cdef class cyfunc:
cdef double dy[2]
cdef double* f(self, double* y):
return self.dy
def __cinit__(self):
pass
@cython.cdivision(True)
@cython.boundscheck(False)
@cython.wraparound(False)
cpdef rkf(cyfunc f, np.ndarray[double, ndim=1] times,
np.ndarray[double, ndim=1] x0,
double tol=1e-7, double dt_max=-1.0, double dt_min=1e-8):
# Initialize
cdef double t = times[0]
cdef int times_index = 1
cdef int add = 0
cdef double end_time = times[len(times) - 1]
cdef np.ndarray[double, ndim=1] res = np.empty_like(times)
res[0] = x0[1] # Only storing second variable
cdef double x[2]
x[:] = x0
cdef double k1[2]
cdef double k2[2]
cdef double k3[2]
cdef double k4[2]
cdef double k5[2]
cdef double k6[2]
cdef double r[2]
while abs(t - times[times_index]) < tol: # if t = 0 multiple times
res[times_index] = res[0]
t = times[times_index]
times_index += 1
if dt_max == -1.0:
dt_max = 5. * (times[times_index] - times[0])
cdef double dt = dt_max/10.0
cdef double tolh = tol*dt
while t < end_time:
# If possible, step to next time to save
if t + dt >= times[times_index]:
dt = times[times_index] - t;
add = 1
# Calculate Runga Kutta variables
k1 = f.f(x)
k1[0] *= dt; k1[1] *= dt;
r[0] = x[0] + b21 * k1[0]
r[1] = x[1] + b21 * k1[1]
k2 = f.f(r)
k2[0] *= dt; k2[1] *= dt;
r[0] = x[0] + b31 * k1[0] + b32 * k2[0]
r[1] = x[1] + b31 * k1[1] + b32 * k2[1]
k3 = f.f(r)
k3[0] *= dt; k3[1] *= dt;
r[0] = x[0] + b41 * k1[0] + b42 * k2[0] + b43 * k3[0]
r[1] = x[1] + b41 * k1[1] + b42 * k2[1] + b43 * k3[1]
k4 = f.f(r)
k4[0] *= dt; k4[1] *= dt;
r[0] = x[0] + b51 * k1[0] + b52 * k2[0] + b53 * k3[0] + b54 * k4[0]
r[1] = x[1] + b51 * k1[1] + b52 * k2[1] + b53 * k3[1] + b54 * k4[1]
k5 = f.f(r)
k5[0] *= dt; k5[1] *= dt;
r[0] = x[0] + b61 * k1[0] + b62 * k2[0] + b63 * k3[0] + b64 * k4[0] + b65 * k5[0]
r[1] = x[1] + b61 * k1[1] + b62 * k2[1] + b63 * k3[1] + b64 * k4[1] + b65 * k5[1]
k6 = f.f(r)
k6[0] *= dt; k6[1] *= dt;
# Find largest error
r[0] = abs(r1 * k1[0] + r3 * k3[0] + r4 * k4[0] + r5 * k5[0] + r6 * k6[0])
r[1] = abs(r1 * k1[1] + r3 * k3[1] + r4 * k4[1] + r5 * k5[1] + r6 * k6[1])
if r[1] > r[0]:
r[0] = r[1]
# If error is smaller than tolerance, take step
tolh = tol*dt
if r[0] <= tolh:
t = t + dt
x[0] = x[0] + c1 * k1[0] + c3 * k3[0] + c4 * k4[0] + c5 * k5[0]
x[1] = x[1] + c1 * k1[1] + c3 * k3[1] + c4 * k4[1] + c5 * k5[1]
# Save if at a save time index
if add:
while abs(t - times[times_index]) < tol:
res[times_index] = x[1]
t = times[times_index]
times_index += 1
add = 0
# Update time stepping
dt = dt * min(max(0.84 * ( tolh / r[0] )**0.25, 0.1), 4.0)
if dt > dt_max:
dt = dt_max
elif dt < dt_min: # Equations are too stiff
return res*0 - 100 # or something
# ADD STOPPING CONDITION HERE...
return res
cdef class F(cyfunc):
cdef double a
def __init__(self, double a):
self.a = a
cdef double* f(self, double y[2]):
self.dy[0] = self.a*y[1] - y[0]
self.dy[1] = y[0] - y[1]**2
return self.dy
代码可以运行
test.py
import numpy as np
import matplotlib.pyplot as plt
import pyximport
pyximport.install(setup_args='include_dirs': np.get_include())
from cythoncode import rkf, F
x0 = np.array([1, 0], dtype=np.float64)
f = F(a=0.1)
t = np.linspace(0, 30, 100)
y = rkf(f, t, x0)
plt.plot(t, y)
plt.show()
【讨论】:
嘿,这看起来真是太棒了!我会尽快试一试,让你知道事情的进展。系数看起来很熟悉,这是RKF45?我一直设法避免使用 cython,但这看起来是一种很好的介绍方式。谢谢你的精彩回答! 是的,它是 rkf45/rkf,随便你怎么称呼它。祝赛通好运!如果有不清楚的地方请告诉我。 我认为直到周末我才能尝试这个,但我现在可以接受了。再次感谢您的帮助! 哈! “我想我要等到周末才能尝试这个……” 两年过去了,我设法避免学习使用其中任何一种;真丢人!以上是关于python 的scipy 里的 odeint 这个求微分方程的函数怎么用啊的主要内容,如果未能解决你的问题,请参考以下文章
boost odeint 给出了与 Python3 scipy 非常不同的值
路径关闭时如何让 SciPy.integrate.odeint 停止?
用 scipy odeint 在 python 中求解向量常微分方程
如何使用 scipy.integrate.odeint 求解具有时间相关变量的 ODE 系统