MySQL和B+树的那些事&mysql 索引原理
Posted 文 武
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MySQL和B+树的那些事&mysql 索引原理相关的知识,希望对你有一定的参考价值。
一、零铺垫
在介绍B树之前,先来看另一棵神奇的树——二叉排序树(Binary Sort Tree),首先它是一棵树,“二叉”这个描述已经很明显了,就是树上的一根树枝开两个叉,于是递归下来就是二叉树了(下图所示),而这棵树上的节点是已经排好序的,具体的排序规则如下:
- 若左子树不空,则左子树上所有节点的值均小于它的根节点的值
- 若右子树不空,则右子树上所有节点的值均大于它的根节点的值
- 它的左、右子树也分别为二叉排序数(递归定义)
从图中可以看出,二叉排序树组织数据时,用于查找是比较方便的,因为每次经过一次节点时,最多可以减少一半的可能,不过极端情况会出现所有节点都位于同一侧,直观上看就是一条直线,那么这种查询的效率就比较低了,因此需要对二叉树左右子树的高度进行平衡化处理,于是就有了平衡二叉树(Balenced Binary Tree)。
所谓“平衡”,说的是这棵树的各个分支的高度是均匀的,它的左子树和右子树的高度之差绝对值小于1,这样就不会出现一条支路特别长的情况。于是,在这样的平衡树中进行查找时,总共比较节点的次数不超过树的高度,这就确保了查询的效率(时间复杂度为O(logn))。
二、B树的起源
B树,最早是由德国计算机科学家Rudolf Bayer等人于1972年在论文 《Organization and Maintenance of Large Ordered Indexes》提出的,不过我去看了看原文,发现作者也没有解释为什么就叫B-trees了,所以把B树的B,简单地解释为Balanced或者Binary都不是特别严谨,也许作者就是取其名字Bayer的首字母命名的也说不定啊……
三、B树长啥样
还是直接看图比较清楚,图中所示,B树事实上是一种平衡的多叉查找树,也就是说最多可以开m个叉(m>=2),我们称之为m阶b树,为了体现本博客的良心之处,不同于其他地方都能看到2阶B树,这里特意画了一棵5阶B树 。
总的来说,m阶B树满足以下条件:
- 每个节点至多可以拥有m棵子树
- 根节点,只有至少有2个节点(要么极端情况,就是一棵树就一个根节点,单细胞生物,即是根,也是叶,也是树)。
- 非根非叶的节点至少有的Ceil(m/2)个子树(Ceil表示向上取整,图中5阶B树,每个节点至少有3个子树,也就是至少有3个叉)。
- 非叶节点中的信息包括[n,A0,K1,A1,K2,A2,…,Kn,An],,其中n表示该节点中保存的关键字个数,K为关键字且Ki<Ki+1,A为指向子树根节点的指针。
- 从根到叶子的每一条路径都有相同的长度,也就是说,叶子节在相同的层,并且这些节点不带信息,实际上这些节点就表示找不到指定的值,也就是指向这些节点的指针为空。
B树的查询过程和二叉排序树比较类似,从根节点依次比较每个结点,因为每个节点中的关键字和左右子树都是有序的,所以只要比较节点中的关键字,或者沿着指针就能很快地找到指定的关键字,如果查找失败,则会返回叶子节点,即空指针。
例如查询图中字母表中的K
- 从根节点P开始,K的位置在P之前,进入左侧指针
- 左子树中,依次比较C、F、J、M,发现K在J和M之间
- 沿着J和M之间的指针,继续访问子树,并依次进行比较,发现第一个关键字K即为指定查找的值
四、Plus版——B+树
作为B树的加强版,B+树与B树的差异在于
- 有n棵子树的节点含有n个关键字(也有认为是n-1个关键字)
- 所有的叶子节点包含了全部的关键字,及指向含这些关键字记录的指针,且叶子节点本身根据关键字自小而大顺序连接
- 非叶子节点可以看成索引部分,节点中仅含有其子树(根节点)中的最大(或最小)关键字
B+树的查找过程,与B树类似,只不过查找时,如果在非叶子节点上的关键字等于给定值,并不终止,而是继续沿着指针直到叶子节点位置。因此在B+树,不管查找成功与否,每次查找都是走了一条从根到叶子节点的路径。
五、MySQL是如何使用B树的
说明:事实上,在mysql数据库中,诸多存储引擎使用的是B+树,即便其名字看上去是BTREE。
1、innodb的索引机制
先以innodb存储引擎为例,说明innodb引擎是如何利用B+树建立索引的。首先创建一张表:zodiac,并插入一些数据
CREATE TABLE `zodiac` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` char(4) NOT NULL, PRIMARY KEY (`id`), KEY `index_name` (`name`)); insert zodiac(id,name) values(1,\'鼠\'); insert zodiac(id,name) values(2,\'牛\'); insert zodiac(id,name) values(3,\'虎\'); insert zodiac(id,name) values(4,\'兔\'); insert zodiac(id,name) values(5,\'龙\'); insert zodiac(id,name) values(6,\'蛇\'); insert zodiac(id,name) values(7,\'马\'); insert zodiac(id,name) values(8,\'羊\'); insert zodiac(id,name) values(9,\'猴\');insert zodiac(id,name) values(10,\'鸡\'); insert zodiac(id,name) values(11,\'狗\'); insert zodiac(id,name) values(12,\'猪\');
对于innodb来说,只有一个数据文件,这个数据文件本身就是用B+树形式组织,B+树每个节点的关键字就是表的主键,因此innodb的数据文件本身就是主索引文件,如下图所示,主索引中的叶子页(leaf page)包含了数据记录,但非叶子节点只包含了主键,术语“聚簇”表示数据行和相邻的键值紧凑地存储在一起,因此这种索引被称为聚簇索引,或聚集索引。
这种索引方式,可以提高数据访问的速度,因为索引和数据是保存在同一棵B树之中,从聚簇索引中获取数据通常比在非聚簇索引中要来得快。
所以可以说,innodb的数据文件是依靠主键组织起来的,这也就是为什么innodb引擎下创建的表,必须指定主键的原因,如果没有显式指定主键,innodb引擎仍然会对该表隐式地定义一个主键作为聚簇索引。
同样innodb的辅助索引,如下图所示,假设这些字符是按照生肖的顺序排列的(其实我也不知道具体怎么实现,不要在意这些细节,就是举个例子),其叶子节点中也包含了记录的主键,因此innodb引擎在查询辅助索引的时候会查询两次,首先通过辅助索引得到主键值,然后再查询主索引,略微有点啰嗦。。。
2、MyISAM的索引机制
MyISAM引擎同样也使用B+树组织索引,如下图所示,假设我们的数据不是按照之前的顺序插入的,而是按照图中的是顺序插入表,可以看到MyISAM引擎下,B+树叶子节点中包含的是数据记录的地址(可以简单理解为“行号”),而MyISAM的辅助索引在结构上和主索引没有本质的区别,同样其叶子节点也包含了数据记录的地址,稍微不同的是辅助索引的关键字是允许重复。
六、简单对比
1、Innodb辅助索引的叶子节点存储的不是地址,而是主键值,这样的策略减少了当出现行移动或者数据页分裂时辅助索引的维护工作,虽然使用主键值当作指针会让辅助索引占用更多空间,但好处是,Innodb在移动行时无需更新辅助索引中的主键值,而MyISAM需要调整其叶子节点中的地址。
2、innodb引擎下,数据记录是保存在B+树的叶子节点(大小相当于磁盘上的页)上,当插入新的数据时,如果主键的值是有序的,它会把每一条记录都存储在上一条记录的后面,但是如果主键使用的是无序的数值,例如UUID,这样在插入数据时Innodb无法简单地把新的数据插入到最后,而是需要为这条数据寻找合适的位置,这就额外增加了工作,这就是innodb引擎写入性能要略差于MyISAM的原因之一。
Innodb和MyISAM索引的抽象图
一、索引的本质
MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。提取句子主干,就可以得到索引的本质:索引是数据结构。
我们知道,数据库查询是数据库的最主要功能之一。我们都希望查询数据的速度能尽可能的快,因此数据库系统的设计者会从查询算法的角度进行优化。最基本的查询算法当然是顺序查找(linear search),这种复杂度为O(n)的算法在数据量很大时显然是糟糕的,好在计算机科学的发展提供了很多更优秀的查找算法,例如二分查找(binary search)、二叉树查找(binary tree search)等。如果稍微分析一下会发现,每种查找算法都只能应用于特定的数据结构之上,例如二分查找要求被检索数据有序,而二叉树查找只能应用于二叉查找树上,但是数据本身的组织结构不可能完全满足各种数据结构(例如,理论上不可能同时将两列都按顺序进行组织),所以,在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。
看一个例子:
上图展示了一种可能的索引方式。左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在O(log2n)的复杂度内获取到相应数据。
虽然这是一个货真价实的索引,但是实际的数据库系统几乎没有使用二叉查找树或其进化品种红黑树(red-black tree)实现的,原因会在下文介绍。
二、B-Tree 和 B+Tree
目前大部分数据库系统及文件系统都采用B-Tree或其变种B+Tree作为索引结构,在本文的下一节会结合存储器原理及计算机存取原理讨论为什么B-Tree和B+Tree在被如此广泛用于索引,这一节先单纯从数据结构角度描述它们。
1、B-Tree
为了描述B-Tree,首先定义一条数据记录为一个二元组[key, data],key为记录的键值,对于不同数据记录,key是互不相同的;data为数据记录除key外的数据。那么B-Tree是满足下列条件的数据结构:
d为大于1的一个正整数,称为B-Tree的度。
h为一个正整数,称为B-Tree的高度。
每个非叶子节点由n-1个key和n个指针组成,其中d<=n<=2d。
每个叶子节点最少包含一个key和两个指针,最多包含2d-1个key和2d个指针,叶节点的指针均为null 。
所有叶节点具有相同的深度,等于树高h。
key和指针互相间隔,节点两端是指针。
一个节点中的key从左到右非递减排列。
所有节点组成树结构。
每个指针要么为null,要么指向另外一个节点。
如果某个指针在节点node最左边且不为null,则其指向节点的所有key小于v(key1),其中v(key1)为node的第一个key的值。
如果某个指针在节点node最右边且不为null,则其指向节点的所有key大于v(keym),其中v(keym)为node的最后一个key的值。
如果某个指针在节点node的左右相邻key分别是keyi和keyi+1且不为null,则其指向节点的所有key小于v(keyi+1)且大于v(keyi)。
下图是一个d=2的B-Tree示意图。
由于B-Tree的特性,在B-Tree中按key检索数据的算法非常直观:首先从根节点进行二分查找,如果找到则返回对应节点的data,否则对相应区间的指针指向的节点递归进行查找,直到找到节点或找到null指针,前者查找成功,后者查找失败。B-Tree上查找算法的伪代码如下:
BTree_Search(node, key) {
if(node == null) return null;
foreach(node.key){
if(node.key[i] == key) return node.data[i];
if(node.key[i] > key) return BTree_Search(point[i]->node);
}
return BTree_Search(point[i+1]->node);
}
data = BTree_Search(root, my_key);
关于B-Tree有一系列有趣的性质,例如一个度为d的B-Tree,设其索引N个key,则其树高h的上限为logd((N+1)/2),检索一个key,其查找节点个数的渐进复杂度为O(logdN)。从这点可以看出,B-Tree是一个非常有效率的索引数据结构。
2、B+Tree
B-Tree有许多变种,其中最常见的是B+Tree,例如MySQL就普遍使用B+Tree实现其索引结构。
与B-Tree相比,B+Tree有以下不同点:
每个节点的指针上限为2d而不是2d+1。
内节点不存储data,只存储key;叶子节点不存储指针。
下图是一个简单的B+Tree示意。
由于并不是所有节点都具有相同的域,因此B+Tree中叶节点和内节点一般大小不同。这点与B-Tree不同,虽然B-Tree中不同节点存放的key和指针可能数量不一致,但是每个节点的域和上限是一致的,所以在实现中B-Tree往往对每个节点申请同等大小的空间。
一般来说,B+Tree比B-Tree更适合实现外存储索引结构,具体原因与外存储器原理及计算机存取原理有关,将在下面讨论。
3、带有顺序访问指针的B+Tree
一般在数据库系统或文件系统中使用的B+Tree结构都在经典B+Tree的基础上进行了优化,增加了顺序访问指针。
如上图所示,在B+Tree的每个叶子节点增加一个指向相邻叶子节点的指针,就形成了带有顺序访问指针的B+Tree。做这个优化的目的是为了提高区间访问的性能,例如上图中如果要查询key为从18到49的所有数据记录,当找到18后,只需顺着节点和指针顺序遍历就可以一次性访问到所有数据节点,极大提到了区间查询效率。
这一节对B-Tree和B+Tree进行了一个简单的介绍,下一节结合存储器存取原理介绍为什么目前B+Tree是数据库系统实现索引的首选数据结构。
三、为什么使用B-Tree(B+Tree)
上文说过,红黑树等数据结构也可以用来实现索引,但是文件系统及数据库系统普遍采用B-/+Tree作为索引结构,这一节将结合计算机组成原理相关知识讨论B-/+Tree作为索引的理论基础。
一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度。换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。下面先介绍内存和磁盘存取原理,然后再结合这些原理分析B-/+Tree作为索引的效率。
1、主存存取原理
目前计算机使用的主存基本都是随机读写存储器(RAM),现代RAM的结构和存取原理比较复杂,这里本文抛却具体差别,抽象出一个十分简单的存取模型来说明RAM的工作原理。
从抽象角度看,主存是一系列的存储单元组成的矩阵,每个存储单元存储固定大小的数据。每个存储单元有唯一的地址,现代主存的编址规则比较复杂,这里将其简化成一个二维地址:通过一个行地址和一个列地址可以唯一定位到一个存储单元。图5展示了一个4 x 4的主存模型。
2、主存的存取过程如下:
当系统需要读取主存时,则将地址信号放到地址总线上传给主存,主存读到地址信号后,解析信号并定位到指定存储单元,然后将此存储单元数据放到数据总线上,供其它部件读取。
写主存的过程类似,系统将要写入单元地址和数据分别放在地址总线和数据总线上,主存读取两个总线的内容,做相应的写操作。
这里可以看出,主存存取的时间仅与存取次数呈线性关系,因为不存在机械操作,两次存取的数据的“距离”不会对时间有任何影响,例如,先取A0再取A1和先取A0再取D3的时间消耗是一样的。
3、磁盘存取原理
上面说过,索引一般以文件形式存储在磁盘上,索引检索需要磁盘I/O操作。与主存不同,磁盘I/O存在机械运动耗费,因此磁盘I/O的时间消耗是巨大的。
下图是磁盘的整体结构示意图。
一个磁盘由大小相同且同轴的圆形盘片组成,磁盘可以转动(各个磁盘必须同步转动)。在磁盘的一侧有磁头支架,磁头支架固定了一组磁头,每个磁头负责存取一个磁盘的内容。磁头不能转动,但是可以沿磁盘半径方向运动(实际是斜切向运动),每个磁头同一时刻也必须是同轴的,即从正上方向下看,所有磁头任何时候都是重叠的(不过目前已经有多磁头独立技术,可不受此限制)。
下图是磁盘结构的示意图。
盘片被划分成一系列同心环,圆心是盘片中心,每个同心环叫做一个磁道,所有半径相同的磁道组成一个柱面。磁道被沿半径线划分成一个个小的段,每个段叫做一个扇区,每个扇区是磁盘的最小存储单元。为了简单起见,我们下面假设磁盘只有一个盘片和一个磁头。
当需要从磁盘读取数据时,系统会将数据逻辑地址传给磁盘,磁盘的控制电路按照寻址逻辑将逻辑地址翻译成物理地址,即确定要读的数据在哪个磁道,哪个扇区。为了读取这个扇区的数据,需要将磁头放到这个扇区上方,为了实现这一点,磁头需要移动对准相应磁道,这个过程叫做寻道,所耗费时间叫做寻道时间,然后磁盘旋转将目标扇区旋转到磁头下,这个过程耗费的时间叫做旋转时间。
4、局部性原理与磁盘预读
当一个数据被用到时,其附近的数据也通常会马上被使用。
程序运行期间所需要的数据通常比较集中。
由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。
预读的长度一般为页(page)的整倍数。页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多操作系统中,页得大小通常为4k),主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。
5、B-/+Tree索引的性能分析
到这里终于可以分析B-/+Tree索引的性能了。
上文说过一般使用磁盘I/O次数评价索引结构的优劣。先从B-Tree分析,根据B-Tree的定义,可知检索一次最多需要访问h个节点。数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:
每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。
B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。
综上所述,用B-Tree作为索引结构效率是非常高的。
而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。
上文还说过,B+Tree更适合外存索引,原因和内节点出度d有关。从上面分析可以看到,d越大索引的性能越好,而出度的上限取决于节点内key和data的大小:
dmax=floor(pagesize/(keysize+datasize+pointsize))dmax=floor(pagesize/(keysize+datasize+pointsize))
floor表示向下取整。由于B+Tree内节点去掉了data域,因此可以拥有更大的出度,拥有更好的性能。
B+Tree的定义
B+Tree是B树的变种,有着比B树更高的查询性能,来看下m阶B+Tree特征:
1、有m个子树的节点包含有m个元素(B-Tree中是m-1)。
2、根节点和分支节点中不保存数据,只用于索引,所有数据都保存在叶子节点中。
3、所有分支节点和根节点都同时存在于子节点中,在子节点元素中是最大或者最小的元素。
4、叶子节点会包含所有的关键字,以及指向数据记录的指针,并且叶子节点本身是根据关键字的大小从小到大顺序链接。
更直观的图
1、红点表示是指向卫星数据的指针,指针指向的是存放实际数据的磁盘页,卫星数据就是数据库中一条数据记录。
2、叶子节点中还有一个指向下一个叶子节点的next指针,所以叶子节点形成了一个有序的链表,方便遍历B+树。
B+树的优势
1、更加高效的单元素查找
B+树的查找元素3的过程:
第一次磁盘IO
第二次磁盘IO
第三次磁盘IO
这个过程看下来,貌似与B树的查询过程没有什么区别。但实际上有两点不一样:
a、首先B+树的中间节点不存储卫星数据,所以同样大小的磁盘页可以容纳更多的节点元素,如此一来,相同数量的数据下,B+树就相对来说要更加矮胖些,磁盘IO的次数更少。
b、由于只有叶子节点才保存卫星数据,B+树每次查询都要到叶子节点;而B树每次查询则不一样,最好的情况是根节点,最坏的情况是叶子节点,没有B+树稳定。
2、叶子节点形成有顺链表,范围查找性能更优
B树范围查找3-8的过程
a、先查找3
b、再查找4、5、6、7、8,中间过程省略,直接到8的查找
这里查找的范围跨度越大,则磁盘IO的次数越多,性能越差。
B+树范围查找3-11的过程
先从上到下找到下限元素3,然后通过链表指针,依次遍历得到元素5/6/8/9/11;如此一来,就不用像B树那样一个个元素进行查找。
总结
1.单节点可以存储更多的元素,使得查询磁盘IO次数更少。
2.所有查询都要查找到叶子节点,查询性能稳定。
3.所有叶子节点形成有序链表,便于范围查询。
PS:在数据库的聚集索引(Clustered Index)中,叶子节点直接包含卫星数据。在非聚集索引(NonClustered Index)中,叶子节点带有指向卫星数据的指针。
一、索引的本质
MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。提取句子主干,就可以得到索引的本质:索引是数据结构。
我们知道,数据库查询是数据库的最主要功能之一。我们都希望查询数据的速度能尽可能的快,因此数据库系统的设计者会从查询算法的角度进行优化。最基本的查询算法当然是顺序查找(linear search),这种复杂度为O(n)的算法在数据量很大时显然是糟糕的,好在计算机科学的发展提供了很多更优秀的查找算法,例如二分查找(binary search)、二叉树查找(binary tree search)等。
如果稍微分析一下会发现,每种查找算法都只能应用于特定的数据结构之上,例如二分查找要求被检索数据有序,而二叉树查找只能应用于二叉查找树上,但是数据本身的组织结构不可能完全满足各种数据结构(例如,理论上不可能同时将两列都按顺序进行组织),所以,在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。
二、B-Tree(平衡多路查找树)
B-Tree是为磁盘等外存储设备设计的一种平衡查找树。因此在讲B-Tree之前先了解下磁盘的相关知识。
系统从磁盘读取数据到内存时是以磁盘块(block)为基本单位的,位于同一个磁盘块中的数据会被一次性读取出来,而不是需要什么取什么。
InnoDB存储引擎中有页(Page)的概念,页是其磁盘管理的最小单位。InnoDB存储引擎中默认每个页的大小为16KB,可通过参数innodb_page_size将页的大小设置为4K、8K、16K,在MySQL中可通过如下命令查看页的大小:
mysql> show variables like \'innodb_page_size\';
而系统一个磁盘块的存储空间往往没有这么大,因此InnoDB每次申请磁盘空间时都会是若干地址连续磁盘块来达到页的大小16KB。InnoDB在把磁盘数据读入到磁盘时会以页为基本单位,在查询数据时如果一个页中的每条数据都能有助于定位数据记录的位置,这将会减少磁盘I/O次数,提高查询效率。
B-Tree结构的数据可以让系统高效的找到数据所在的磁盘块。为了描述B-Tree,首先定义一条记录为一个二元组[key, data] ,key为记录的键值,对应表中的主键值,data为一行记录中除主键外的数据。对于不同的记录,key值互不相同。
一棵m阶的B-Tree有如下特性:
1. 每个节点最多有m个孩子。
2. 除了根节点和叶子节点外,其它每个节点至少有Ceil(m/2)个孩子。
3. 若根节点不是叶子节点,则至少有2个孩子。
4. 所有叶子节点都在同一层,且不包含其它关键字信息。
5. 每个非终端节点包含n个关键字信息(P0,P1,…Pn, k1,…kn)
6. 关键字的个数n满足:ceil(m/2)-1 <= n <= m-1
7. ki(i=1,…n)为关键字,且关键字升序排序。
8. Pi(i=1,…n)为指向子树根节点的指针。P(i-1)指向的子树的所有节点关键字均小于ki,但都大于k(i-1)。
B-Tree中的每个节点根据实际情况可以包含大量的关键字信息和分支,如下图所示为一个3阶的B-Tree:
每个节点占用一个盘块的磁盘空间,一个节点上有两个升序排序的关键字和三个指向子树根节点的指针,指针存储的是子节点所在磁盘块的地址。两个关键词划分成的三个范围域对应三个指针指向的子树的数据的范围域。以根节点为例,关键字为17和35,P1指针指向的子树的数据范围为小于17,P2指针指向的子树的数据范围为17~35,P3指针指向的子树的数据范围为大于35。
模拟查找关键字29的过程:
- 根据根节点找到磁盘块1,读入内存。【磁盘I/O操作第1次】
- 比较关键字29在区间(17,35),找到磁盘块1的指针P2。
- 根据P2指针找到磁盘块3,读入内存。【磁盘I/O操作第2次】
- 比较关键字29在区间(26,30),找到磁盘块3的指针P2。
- 根据P2指针找到磁盘块8,读入内存。【磁盘I/O操作第3次】
- 在磁盘块8中的关键字列表中找到关键字29。
分析上面过程,发现需要3次磁盘I/O操作,和3次内存查找操作。由于内存中的关键字是一个有序表结构,可以利用二分法查找提高效率。而3次磁盘I/O操作是影响整个B-Tree查找效率的决定因素。B-Tree相对于AVLTree缩减了节点个数,使每次磁盘I/O取到内存的数据都发挥了作用,从而提高了查询效率。
三、B+Tree
B+Tree是在B-Tree基础上的一种优化,使其更适合实现外存储索引结构,InnoDB存储引擎就是用B+Tree实现其索引结构。
从上一节中的B-Tree结构图中可以看到每个节点中不仅包含数据的key值,还有data值。而每一个页的存储空间是有限的,如果data数据较大时将会导致每个节点(即一个页)能存储的key的数量很小,当存储的数据量很大时同样会导致B-Tree的深度较大,增大查询时的磁盘I/O次数,进而影响查询效率。在B+Tree中,所有数据记录节点都是按照键值大小顺序存放在同一层的叶子节点上,而非叶子节点上只存储key值信息,这样可以大大加大每个节点存储的key值数量,降低B+Tree的高度。
B+Tree相对于B-Tree有几点不同:
- 非叶子节点只存储键值信息。
- 所有叶子节点之间都有一个链指针。
- 数据记录都存放在叶子节点中。
将上一节中的B-Tree优化,由于B+Tree的非叶子节点只存储键值信息,假设每个磁盘块能存储4个键值及指针信息,则变成B+Tree后其结构如下图所示:
通常在B+Tree上有两个头指针,一个指向根节点,另一个指向关键字最小的叶子节点,而且所有叶子节点(即数据节点)之间是一种链式环结构。因此可以对B+Tree进行两种查找运算:一种是对于主键的范围查找和分页查找,另一种是从根节点开始,进行随机查找。
四、为什么使用B-Tree(B+Tree)
上文说过,红黑树等数据结构也可以用来实现索引,但是文件系统及数据库系统普遍采用B-/+Tree作为索引结构,这一节将结合计算机组成原理相关知识讨论B-/+Tree作为索引的理论基础。
一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘I/O操作次数的渐进复杂度。换句话说,索引的结构组织要尽量减少查找过程中磁盘I/O的存取次数。下面先介绍内存和磁盘存取原理,然后再结合这些原理分析B-/+Tree作为索引的效率。
主存存取原理
目前计算机使用的主存基本都是随机读写存储器(RAM),现代RAM的结构和存取原理比较复杂,这里本文抛却具体差别,抽象出一个十分简单的存取模型来说明RAM的工作原理。
从抽象角度看,主存是一系列的存储单元组成的矩阵,每个存储单元存储固定大小的数据。每个存储单元有唯一的地址,现代主存的编址规则比较复杂,这里将其简化成一个二维地址:通过一个行地址和一个列地址可以唯一定位到一个存储单元。图5展示了一个4 x 4的主存模型。
主存的存取过程如下:
当系统需要读取主存时,则将地址信号放到地址总线上传给主存,主存读到地址信号后,解析信号并定位到指定存储单元,然后将此存储单元数据放到数据总线上,供其它部件读取。
写主存的过程类似,系统将要写入单元地址和数据分别放在地址总线和数据总线上,主存读取两个总线的内容,做相应的写操作。
这里可以看出,主存存取的时间仅与存取次数呈线性关系,因为不存在机械操作,两次存取的数据的“距离”不会对时间有任何影响,例如,先取A0再取A1和先取A0再取D3的时间消耗是一样的。
磁盘存取原理
上面说过,索引一般以文件形式存储在磁盘上,索引检索需要磁盘I/O操作。与主存不同,磁盘I/O存在机械运动耗费,因此磁盘I/O的时间消耗是巨大的。
下图是磁盘的整体结构示意图。
一个磁盘由大小相同且同轴的圆形盘片组成,磁盘可以转动(各个磁盘必须同步转动)。在磁盘的一侧有磁头支架,磁头支架固定了一组磁头,每个磁头负责存取一个磁盘的内容。磁头不能转动,但是可以沿磁盘半径方向运动(实际是斜切向运动),每个磁头同一时刻也必须是同轴的,即从正上方向下看,所有磁头任何时候都是重叠的(不过目前已经有多磁头独立技术,可不受此限制)。
下图是磁盘结构的示意图。
盘片被划分成一系列同心环,圆心是盘片中心,每个同心环叫做一个磁道,所有半径相同的磁道组成一个柱面。磁道被沿半径线划分成一个个小的段,每个段叫做一个扇区,每个扇区是磁盘的最小存储单元。为了简单起见,我们下面假设磁盘只有一个盘片和一个磁头。
当需要从磁盘读取数据时,系统会将数据逻辑地址传给磁盘,磁盘的控制电路按照寻址逻辑将逻辑地址翻译成物理地址,即确定要读的数据在哪个磁道,哪个扇区。为了读取这个扇区的数据,需要将磁头放到这个扇区上方,为了实现这一点,磁头需要移动对准相应磁道,这个过程叫做寻道,所耗费时间叫做寻道时间,然后磁盘旋转将目标扇区
以上是关于MySQL和B+树的那些事&mysql 索引原理的主要内容,如果未能解决你的问题,请参考以下文章