DataX安装使用实现mysql到MySQL数据同步
1.前置条件:
1.1jdk安装
-
jdk安装前往官网,这里我安装jdk-8u261
-
解压
sudo mkdir -p /opt/moudle sudo tar -zxvf jdk-8u261-linux-x64.tar.gz -C /opt/moudle/
-
设置环境变量
export JAVA_HOME=/opt/moudle/jdk1.8.0_261 export JRE_HOME=${JAVA_HOME}/jre export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib export PATH=${JAVA_HOME}/bin:$PATH
-
刷新配置
source /etc/profile
-
检查java
java -version # 出现下面安装成功 java version "1.8.0_261" Java(TM) SE Runtime Environment (build 1.8.0_261-b12) Java HotSpot(TM) 64-Bit Server VM (build 25.261-b12, mixed mode)
1.2python安装
- 略(官方推荐>=2.6.X)
1.3 Hadoop单机伪分布式安装
2.安装DataX
-
DataX是阿里巴巴的一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。
!
-
下载地址:http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
-
解压
tar -zxvf datax.tar.gz -C /opt/software/
-
运行自检脚本
cd /opt/software/datax/ bin/datax.py job/job.json
-
出现下面界面表示成功:
/opt/software/datax/job/job.json
格式。
{
"content":[
{
"reader":{
"name":"streamreader",# 流式读,根据DataX定义好的设置
"parameter":{
"column":[#把column里所有value读到流当中
{
"type":"string",
"value":"DataX"
},
{
"type":"long",
"value":19890604
},
{
"type":"date",
"value":"1989-06-04 00:00:00"
},
{
"type":"bool",
"value":true
},
{
"type":"bytes",
"value":"test"
}
],
"sliceRecordCount":100000
}
},
"writer":{
"name":"streamwriter",# 流式写,根据DataX定义好的设置
"parameter":{
"encoding":"UTF-8",
"print":false#打印
}
}
}
],
"setting":{
"errorLimit":{# errorLimit错误限制
"percentage":0.02,# 最大容忍错误限制百分比2%
"record":0# 容忍错误记录调试 0
},
"speed":{# 控制并发数:通过byte或channel控制,这里默认通过byte控制
"byte":10485760#以 sliceRecordCount乘以byte,打印数据条数占用空间
}
}
}
3.基本使用
3.1从stream读取数据并打印到控制台。
-
首先查看官方json配置模版
# 查看 streamreader --> streamwriter 模版 python /opt/software/datax/bin/datax.py -r streamreader -w streamwriter # 模版如下: DataX (DATAX-OPENSOURCE-3.0), From Alibaba ! Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved. Please refer to the streamreader document: https://github.com/alibaba/DataX/blob/master/streamreader/doc/streamreader.md Please refer to the streamwriter document: https://github.com/alibaba/DataX/blob/master/streamwriter/doc/streamwriter.md Please save the following configuration as a json file and use python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json to run the job. { "job": { "content": [ { "reader": { "name": "streamreader", "parameter": { "column": [], "sliceRecordCount": "" } }, "writer": { "name": "streamwriter", "parameter": { "encoding": "", "print": true } } } ], "setting": { "speed": { "channel": "" } } } }
-
根据模版编写json文件
{ "job": { "content": [ { "reader": { "name": "streamreader", "parameter": { "column": [ { "type":"string", "value":"xujunkai, hello world!" }, { "type":"string", "value":"徐俊凯, 你好!" }, ], "sliceRecordCount": "10"#打印次数 } }, "writer": { "name": "streamwriter", "parameter": { "encoding": "utf-8", #编码方式utf-8 "print": true } } } ], "setting": { "speed": {#控制并发数 "channel": "2"#控制并发2次-->这里因为是打印所以会sliceRecordCount乘以channel 打印20遍。如果设置为mysql真的会进行并发 } } } }
-
创建一个json文件,在根目录
mkdir json cd json/ vim stream2stream.json # 将上述内容粘贴进去
-
运行job
/opt/software/datax/bin/datax.py ./stream2stream.json
-
如下图:
3.2从MySQL到MySQL批量插入
3.2.1预先准备工作:
-
写入和读取方准备创建库和表
# 创建库 create database `testdatax` character set utf8 # 创建表 create table user1w( id int not null auto_increment, name varchar(10) not null, score int not null, primary key(`id`))engine=InnoDB default charset=utf8;
-
编写一个简单存储过程,读取数据端插入数据:
DELIMITER // create PROCEDURE add_user(in num INT) BEGIN DECLARE rowid INT DEFAULT 0; DECLARE name CHAR(1); DECLARE score INT; WHILE rowid < num DO SET rowid = rowid + 1; set name = SUBSTRING(\'abcdefghijklmnopqrstuvwxyz\',ROUND(1+25*RAND()),1); set score= FLOOR(40 + (RAND()*60)); insert INTO user1w (name,score) VALUES (name,score); END WHILE; END // DELIMITER ;
-
执行插入数据
call add_user(10000);
3.2.2 查看一下mysql到mysql的json配置
-
python /opt/software/datax/bin/datax.py -r mysqlreader -w mysqlwriter
,json文件配置:{ "job": { "content": [ { "reader": { "name": "mysqlreader", # 读取端,根据DataX定义好的设置 "parameter": { "column": [], # 读取端需要同步的列 "splitPk": "",# 数据抽取时指定字段进行数据分片 "connection": [ { "jdbcUrl": [], #读取端连接信息 "table": []# 读取端指定的表 } ], "password": "", #读取端账户 "username": "", #读取端密码 "where": ""# 描述筛选条件 } }, "writer": { "name": "mysqlwriter", #写入端,根据DataX定义好的设置 "parameter": { "column": [], #写入端需要同步的列 "connection": [ { "jdbcUrl": "", # 写入端连接信息 "table": []# 写入端指定的表 } ], "password": "", #写入端密码 "preSql": [], # 执行写入之前做的事情 "session": [], "username": "", #写入端账户 "writeMode": ""# 操作乐星 } } } ], "setting": { "speed": { "channel": ""#指定channel数 } } } }
-
我的配置json:
{ "job": { "content": [ { "reader": { "name": "mysqlreader", "parameter": { "username": "root", "password": "123" "column": ["*"], "splitPk": "id", "connection": [ { "jdbcUrl": [ "jdbc:mysql://读取端IP:3306/testdatax?useUnicode=true&characterEncoding=utf8" ], "table": ["user1w"] } ] } }, "writer": { "name": "mysqlwriter", "parameter": { "column": ["*"], "connection": [ { "jdbcUrl": "jdbc:mysql://写入端IP:3306/testdatax?useUnicode=true&characterEncoding=utf8", "table": ["user1w"] } ], "password": "123", "preSql": [ "truncate user1w" ], "session": [ "set session sql_mode=\'ANSI\'" ], "username": "root", "writeMode": "insert" } } } ], "setting": { "speed": { "channel": "5" } } } }
-
cd到datax下bin目录执行:
python2 datax.py /root/json/mysql2mysql.json
-
会打印同步数据信息完毕。更多配置见github-dataX
3.3从数据库MySQL数据导入到HDFS中
python /opt/software/datax/bin/datax.py -r mysqlreader -w mysqlwriter
- 未完待续...