写给自己看的DBSCAN:基本实现
Posted lyrich@csdn||cnblogs||github
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了写给自己看的DBSCAN:基本实现相关的知识,希望对你有一定的参考价值。
搬运自我的CSDN https://blog.csdn.net/u013213111/article/details/107308563
参考:西瓜书
DBSCAN的思想是基于密度来聚类,十分直观易懂,更严谨的描述可见西瓜书,其中个人认为最关键的是:
若(x)为核心对象,由(x)密度可达的所有样本组成的集合记为(X={x‘ in D mid x‘由x密度可达}),则不难证明(X)即为满足连接性与最大性的簇。
这就指明了实现的一种思路:先找到所有的核心对象,再找到这些核心对象密度可达的其他点。
伪代码如下:
这里给出C++的实现,基本上忠于上述的伪代码,没有对性能进行优化:
struct clusterData
{
int coordinates[2]; //coordinate[0]:x, coordinate[1]:y
int clusterIndex = 0;
int dataType = 0; //0:noise,1:boundary,2:core
};
/*********
dbscan_cpp
Summary: Density-Based Spatial Clustering of Applications with Noise inplemented in C++
Parameters:
cluster: an array contains all points, points‘ clusterIndex and dataType are initiated as 0
totalPts: number of points in cluster
Return: number of clusters
*********/
int dbscan_cpp(clusterData *cluster, const int totalPts, const double eps, const unsigned int minPts)
{
vector<int> coreObj;
vector<set<int>> neighbors(totalPts);
for (int j = 0; j < totalPts; j++) {
for (int i = 0; i < totalPts; i++) {
double dist = sqrt(pow((cluster[j].coordinates[0] - cluster[i].coordinates[0]), 2)
+ pow((cluster[j].coordinate[1] - cluster[i].coordinate[1]), 2));
if (dist <= eps)
neighbors[j].insert(i);
}
if (neighbors[j].size() >= minPts)
coreObj.push_back(j);
}
set<int> unvisitedPts;
for (int i = 0; i < totalPts; i++)
unvisitedPts.insert(i);
int k = 1; //the index of first cluster is 1, not 0
vector<set<int>> C;
while (coreObj.size() > 0) {
set<int> unvisitedPtsOld(unvisitedPts.begin(), unvisitedPts.end());
int omg = coreObj[0];
list<int> Q;
Q.push_back(omg);
unvisitedPts.erase(omg);
while (Q.size() > 0) {
int q = Q.front();
Q.remove(q);
cluster[q].clusterIndex = k;
if (neighbors[q].size() >= minPts) {
cluster[q].dataType = 2;
set<int> delta;
set_intersection(unvisitedPts.begin(), unvisitedPts.end(), neighbors[q].begin(), neighbors[q].end(), inserter(delta, delta.begin()));
Q.insert(Q.end(), delta.begin(), delta.end());
set<int> diff;
set_difference(unvisitedPts.begin(), unvisitedPts.end(), delta.begin(), delta.end(), inserter(diff, diff.begin()));
unvisitedPts.clear();
copy(diff.begin(), diff.end(), std::inserter(unvisitedPts, unvisitedPts.end()));
}
else
cluster[q].dataType = 1;
}
k = k + 1;
set<int> c;
set_difference(unvisitedPtsOld.begin(), unvisitedPtsOld.end(), unvisitedPts.begin(), unvisitedPts.end(), inserter(c, c.begin()));
C.push_back(c);
set<int> diff;
sort(coreObj.begin(), coreObj.end());
set_difference(coreObj.begin(), coreObj.end(), c.begin(), c.end(), inserter(diff, diff.begin()));
coreObj.assign(diff.begin(), diff.end());
}
return k-1;
}
这里还有一份MATLAB的实现可供参考。
以上是关于写给自己看的DBSCAN:基本实现的主要内容,如果未能解决你的问题,请参考以下文章