linux系统mysql索引

Posted 王顺子

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了linux系统mysql索引相关的知识,希望对你有一定的参考价值。

索引

一、索引的分类

1.根据算法分类

1)主键索引

#1.建表时创建
create table test(id int primary key);
create table test(id int,primary key(id));

#2.添加主键索引
alter table test add primary key pri_key(id);

2)唯一建索引

#1.建表时创建
create table test(id int unique key);

#2.添加唯一建索引
alter table test add unique key uni_key(id);

3)普通索引

#1.添加普通索引
alter table test add index ljp_key(id);

4)全文索引

5)查看索引

#1.方式一:
mysql> show index from test10;

#2.方式二:
mysql> desc test10;
+-------+---------+------+-----+---------+-------+
| Field | Type    | Null | Key | Default | Extra |
+-------+---------+------+-----+---------+-------+
| id    | int(11) | YES  | UNI | NULL    |       |
+-------+---------+------+-----+---------+-------+
1 row in set (0.00 sec)

PRI:主键索引
UNI:唯一建索引
MUL:普通索引

6)删除索引

mysql> alter table test drop index index_key;

2.根据配置方法分类

1)注意事项

1.创建索引时会将数据重新进行排序
2.创建索引会占用磁盘空间,所以索引不是越多越好
3.在同一列上避免创建多种索引
4.避免在数据很长的字段上创建索引,如果要创建就创建前缀索引

2)前缀索引

#根据前四个字符创建前缀索引
mysql> alter table test add index index_key(name(4));

3)联合索引

mysql> create database xiangqing;

mysql> create table xiangqin(id int,name varchar(20),gender enum(‘m‘,‘f‘),age tinyint,money int,height int,weight int,looks tinyint);

mysql> insert xiangqin values(1,‘qiudao‘,‘m‘,38,-200000,120,130,‘10‘),(2,‘dilireba‘,‘f‘,18,400000,180,100,‘60‘),(3,‘cxk‘,‘m‘,28,100000,170,120,‘440‘),(4,‘fbb‘,‘f‘,18,1000000,165,85,‘90‘);

#创建联合索引
mysql> alter table xiangqin add index lh_key(money,gender,age,looks);

#联合索引使用三种情况
1.部分走索引		money,gender,age
2.全部走索引		money,gender,age,looks
3.不走索引		 gender,age

二、explain的使用

1.explain语法

explain + DQL语句

mysql> explain select * from city where countrycode =‘CHN‘ or countrycode =‘USA‘;

#查询中国和美国的数据
mysql> select * from city where countrycode =‘CHN‘ or countrycode =‘USA‘;
mysql> select * from city where countrycode in (‘CHN‘,‘USA‘);
mysql> select * from city where countrycode = ‘CHN‘ union all select * from city where countrycode = ‘USA‘;

Extra(扩展)
	Using temporary 使用group by大概率出现
	Using filesort 使用了order by大概率出现
	Using join buffer 使用join on大概率出现

2.扩展group by

#一般与聚合索引一起使用

#建表
mysql> create table jixiao(id int,name varchar(20) charset utf8,jixiao int,product varchar(10) charset utf8);                                    
Query OK, 0 rows affected (0.03 sec)
#插入数据
mysql> insert jixiao values(1,‘qiudao‘,‘1000000‘,‘房地产‘),(2,‘niulei‘,‘10000‘,‘房地产‘),(3,‘lijianpeng‘,‘100000‘,‘汽车‘),(4,‘qiandao‘,‘200000‘,‘ 汽车‘);
#查询不同行业绩效最高的人
mysql> select name,sum(jixiao),product from jixiao group by product;
+------------+-------------+-----------+
| name       | sum(jixiao) | product   |
+------------+-------------+-----------+
| qiudao     |     1010000 | 房地产    |
| lijianpeng |      300000 | 汽车      |
+------------+-------------+-----------+
2 rows in set (0.00 sec)
#查询房地产行业绩效最高的人
mysql> select name,sum(jixiao),product from jixiao group by product having product=‘房地产‘;
+--------+-------------+-----------+
| name   | sum(jixiao) | product   |
+--------+-------------+-----------+
| qiudao |     1010000 | 房地产    |
+--------+-------------+-----------+
1 row in set (0.00 sec)

3.查询数据的方式

1)全表扫描

#1.什么是全表扫描
查询数据时type类型为ALL

#2.什么情况全表扫描
1)查询数据库所有数据
	mysql> explain select * from country
2)没有走索引
	没设置索引
	索引损坏

2)索引扫描

1.index			#全索引扫描
	mysql> explain select Name from city;

2.range			#范围查询
	mysql> explain select * from city where countrycode =‘CHN‘ or countrycode =‘USA‘;
	#有限制查询到的数据在总数据的20%以内,超过则走全文扫描,所以在查询是可以使用limit限制
	mysql> explain select * from city where countrycode != ‘CHN‘ limit 500;

3.ref			#精确查询
	mysql> explain select * from city where countrycode =‘CHN‘;

4.eq_ref		#使用join on时偶尔会出现

5.const			#查询条件是唯一索引或主键索引
	mysql> explain select * from city where id=1;

6.system		#查询级别与const一样,当数据很少时为该级别

7.null			#不需要读取数据,只需要获取最大值或者最小值
	mysql> explain select max(population) from city;

三、索引的建立

1.索引的建立原则

1.能创建唯一索引就创建唯一索引

2.为经常需要排序、分组和联合操作的字段建立索引

3.为常作为查询条件的字段建立索引
	如果某个字段经常用来做查询条件,那么该字段的查询速度会影响整个表的查询速度。
	因此,为这样的字段建立索引,可以提高整个表的查询速度。
	
4.尽量使用前缀来索引
	如果索引字段的值很长,最好使用值的前缀来索引。
		例如,TEXT和BLOG类型的字段,进行全文检索,会很浪费时间。如果只检索字段的前面的若干个字符,这样可以提高检索速度。
		
5.限制索引的数目
	索引的数目不是越多越好。每个索引都需要占用磁盘空间,索引越多,需要的磁盘空间就越大。
	修改表时,对索引的重构和更新很麻烦。越多的索引,会使更新表变得很浪费时间。

6.删除不再使用或者很少使用的索引
	表中的数据被大量更新,或者数据的使用方式被改变后,原有的一些索引可能不再需要。数据库管理员应当定期找出这些索引,将它们删除,从而减少索引对更新操作的影响。

2.总结什么时候不走索引

1)没有查询条件,或者查询条件没有索引

#没有查询条件
mysql> explain select * from city;
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key  | key_len | ref  | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
|  1 | SIMPLE      | city  | ALL  | NULL          | NULL | NULL    | NULL | 4188 | NULL  |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
1 row in set (0.00 sec)

#查询条件没有索引
mysql> explain select District from city;
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key  | key_len | ref  | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
|  1 | SIMPLE      | city  | ALL  | NULL          | NULL | NULL    | NULL | 4188 | NULL  |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
1 row in set (0.00 sec)

2)查询的结果占总数据的20%左右

#占总数据的18%,没走索引
mysql> explain select * from city where population > 400000;

#占总数据的15%,走了索引
mysql> explain select * from city where population > 450000;

#如果数据量查询就是表中大部分数据,可以用limit做限制
mysql> explain select * from city where population > 400000 limit 100;

3)索引损坏

4)查询条件带了特使符号(+,-)

#在=号左侧有特殊符号,不走索引
mysql> explain select * from city where id-1=1;

#在=号右侧有特殊符号,走索引
mysql> explain select * from city where id=3-1;

5)隐式转换

#建表
mysql> create table test (id int ,name varchar(20),telnum varchar(10));
Query OK, 0 rows affected (0.04 sec)
#插入数据
mysql> insert into test values(1,‘zs‘,‘110‘),(2,‘l4‘,120),(3,‘w5‘,119),(4,‘z4‘,112);
Query OK, 4 rows affected (0.00 sec)
Records: 4  Duplicates: 0  Warnings: 0
#建立索引
mysql> desc phonenum;
+-------+-------------+------+-----+---------+-------+
| Field | Type        | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| id    | int(11)     | YES  |     | NULL    |       |
| name  | varchar(10) | YES  |     | NULL    |       |
| phone | varchar(10) | YES  | UNI | NULL    |       |
+-------+-------------+------+-----+---------+-------+
3 rows in set (0.00 sec)
#查询语句级别全文扫描
mysql> explain select * from phonenum where phone=6666666;
+----+-------------+----------+------+---------------+------+---------+------+------+-------------+
| id | select_type | table    | type | possible_keys | key  | key_len | ref  | rows | Extra       |
+----+-------------+----------+------+---------------+------+---------+------+------+-------------+
|  1 | SIMPLE      | phonenum | ALL  | uni_key       | NULL | NULL    | NULL |    3 | Using where |
+----+-------------+----------+------+---------------+------+---------+------+------+-------------+
1 row in set (0.00 sec)
#当给字符加上引号,查询为索引扫描
mysql> explain select * from phonenum where phone=‘6666666‘;
+----+-------------+----------+-------+---------------+---------+---------+-------+------+-------+
| id | select_type | table    | type  | possible_keys | key     | key_len | ref   | rows | Extra |
+----+-------------+----------+-------+---------------+---------+---------+-------+------+-------+
|  1 | SIMPLE      | phonenum | const | uni_key       | uni_key | 13      | const |    1 | NULL  |
+----+-------------+----------+-------+---------------+---------+---------+-------+------+-------+
1 row in set (0.00 sec)

6)like "%_" 百分号在最前面不走

#走range索引扫描
EXPLAIN SELECT * FROM teltab WHERE telnum LIKE ‘31%‘;
#不走索引
EXPLAIN SELECT * FROM teltab WHERE telnum LIKE ‘%110‘;

7)联合索引查询不按照顺序有可能不走索引

%linux%类的搜索需求,可以使用Elasticsearch -------> ELK
单独引用联合索引里非第一位置的索引列

CREATE TABLE t1 (id INT,NAME VARCHAR(20),age INT ,sex ENUM(‘m‘,‘f‘),money INT);
ALTER TABLE t1 ADD INDEX t1_idx(money,age,sex);
DESC t1
SHOW INDEX FROM t1
#走索引的情况测试
EXPLAIN SELECT NAME,age,sex,money FROM t1 WHERE money=30 AND age=30  AND sex=‘m‘;
#部分走索引
EXPLAIN SELECT NAME,age,sex,money FROM t1 WHERE money=30 AND age=30;
EXPLAIN SELECT NAME,age,sex,money FROM t1 WHERE money=30  AND sex=‘m‘; 
#不走索引
EXPLAIN SELECT  NAME,age,sex,money FROM t1 WHERE age=20
EXPLAIN SELECT NAME,age,sex,money FROM t1 WHERE age=30 AND sex=‘m‘;
EXPLAIN SELECT NAME,age,sex,money FROM t1 WHERE sex=‘m‘;

以上是关于linux系统mysql索引的主要内容,如果未能解决你的问题,请参考以下文章

Android 逆向Linux 文件权限 ( Linux 权限简介 | 系统权限 | 用户权限 | 匿名用户权限 | 读 | 写 | 执行 | 更改组 | 更改用户 | 粘滞 )(代码片段

MySQL进阶篇之MySQL索引

如何看mysql版本

Mysql高级-day01

mysql查看版本的四种方法

solr分布式索引实战分片配置读取:工具类configUtil.java,读取配置代码片段,配置实例