C++中string类的详细用法

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了C++中string类的详细用法相关的知识,希望对你有一定的参考价值。

string类的详细用法,越详细越好

  要想使用标准C++中string类,必须要包含
#include <string>// 注意是<string>,不是<string.h>,带.h的是C语言中的头文件
using std::string;
using std::wstring;

using namespace std;

string类的大部分函数:
begin 得到指向字符串开头的Iterator
end 得到指向字符串结尾的Iterator
rbegin 得到指向反向字符串开头的Iterator
rend 得到指向反向字符串结尾的Iterator
size 得到字符串的大小
length 和size函数功能相同
max_size 字符串可能的最大大小
capacity 在不重新分配内存的情况下,字符串可能的大小
empty 判断是否为空
operator[] 取第几个元素,相当于数组
c_str 取得C风格的const char* 字符串
data 取得字符串内容地址
operator= 赋值操作符
reserve 预留空间
swap 交换函数
insert 插入字符
append 追加字符
push_back 追加字符
operator+= += 操作符
erase 删除字符串
clear 清空字符容器中所有内容
resize 重新分配空间
assign 和赋值操作符一样
replace 替代
copy 字符串到空间
find 查找
rfind 反向查找
find_first_of 查找包含子串中的任何字符,返回第一个位置
find_first_not_of 查找不包含子串中的任何字符,返回第一个位置
find_last_of 查找包含子串中的任何字符,返回最后一个位置
find_last_not_of 查找不包含子串中的任何字符,返回最后一个位置
substr 得到字串
compare 比较字符串
operator+ 字符串链接
operator== 判断是否相等
operator!= 判断是否不等于
operator< 判断是否小于
operator>> 从输入流中读入字符串
operator<< 字符串写入输出流
getline 从输入流中读入一行

string类的函数原型:

string类的构造函数:
string(const char *s); //用c字符串s初始化
string(int n,char c); //用n个字符c初始化
此外,string类还支持默认构造函数和复制构造函数,如string s1;string s2="hello";都是正确的写法。当构造的string太长而无法表达时会抛出length_error异常 ;

string类的字符操作:
const char &operator[](int n)const;
const char &at(int n)const;
char &operator[](int n);
char &at(int n);
operator[]和at()均返回当前字符串中第n个字符的位置,但at函数提供范围检查,当越界时会抛出out_of_range异常,下标运算符[]不提供检查访问。
const char *data()const;//返回一个非null终止的c字符数组
const char *c_str()const;//返回一个以null终止的c字符串
int copy(char *s, int n, int pos = 0) const;//把当前串中以pos开始的n个字符拷贝到以s为起始位置的字符数组中,返回实际拷贝的数目

string的特性描述:
int capacity()const; //返回当前容量(即string中不必增加内存即可存放的元素个数)
int max_size()const; //返回string对象中可存放的最大字符串的长度
int size()const; //返回当前字符串的大小
int length()const; //返回当前字符串的长度
bool empty()const; //当前字符串是否为空
void resize(int len,char c);//把字符串当前大小置为len,并用字符c填充不足的部分
string类的输入输出操作:
string类重载运算符operator>>用于输入,同样重载运算符operator<<用于输出操作。
函数getline(istream &in,string &s);用于从输入流in中读取字符串到s中,以换行符'\n'分开。
string的赋值:
string &operator=(const string &s);//把字符串s赋给当前字符串
string &assign(const char *s);//用c类型字符串s赋值
string &assign(const char *s,int n);//用c字符串s开始的n个字符赋值
string &assign(const string &s);//把字符串s赋给当前字符串
string &assign(int n,char c);//用n个字符c赋值给当前字符串
string &assign(const string &s,int start,int n);//把字符串s中从start开始的n个字符赋给当前字符串
string &assign(const_iterator first,const_itertor last);//把first和last迭代器之间的部分赋给字符串
string的连接:
string &operator+=(const string &s);//把字符串s连接到当前字符串的结尾
string &append(const char *s); //把c类型字符串s连接到当前字符串结尾
string &append(const char *s,int n);//把c类型字符串s的前n个字符连接到当前字符串结尾
string &append(const string &s); //同operator+=()
string &append(const string &s,int pos,int n);//把字符串s中从pos开始的n个字符连接到当前字符串的结尾
string &append(int n,char c); //在当前字符串结尾添加n个字符c
string &append(const_iterator first,const_iterator last);//把迭代器first和last之间的部分连接到当前字符串的结尾

string的比较:
bool operator==(const string &s1,const string &s2)const;//比较两个字符串是否相等
运算符">","<",">=","<=","!="均被重载用于字符串的比较;
int compare(const string &s) const;//比较当前字符串和s的大小
int compare(int pos, int n,const string &s)const;//比较当前字符串从pos开始的n个字符组成的字符串与s的大小
int compare(int pos, int n,const string &s,int pos2,int n2)const;//比较当前字符串从pos开始的n个字符组成的字符串与s中
                                  //pos2开始的n2个字符组成的字符串的大小
int compare(const char *s) const;
int compare(int pos, int n,const char *s) const;
int compare(int pos, int n,const char *s, int pos2) const;
compare函数在>时返回1,<时返回-1,==时返回0

string的子串:
string substr(int pos = 0,int n = npos) const;//返回pos开始的n个字符组成的字符串
string的交换:
void swap(string &s2); //交换当前字符串与s2的值

string类的查找函数:
int find(char c, int pos = 0) const;//从pos开始查找字符c在当前字符串的位置
int find(const char *s, int pos = 0) const;//从pos开始查找字符串s在当前串中的位置
int find(const char *s, int pos, int n) const;//从pos开始查找字符串s中前n个字符在当前串中的位置
int find(const string &s, int pos = 0) const;//从pos开始查找字符串s在当前串中的位置
//查找成功时返回所在位置,失败返回string::npos的值
int rfind(char c, int pos = npos) const;//从pos开始从后向前查找字符c在当前串中的位置
int rfind(const char *s, int pos = npos) const;
int rfind(const char *s, int pos = npos, int n) const;
int rfind(const string &s,int pos = npos) const;
//从pos开始从后向前查找字符串s中前n个字符组成的字符串在当前串中的位置,成功返回所在位置,失败时返回string::npos的值
int find_first_of(char c, int pos = 0) const;//从pos开始查找字符c第一次出现的位置
int find_first_of(const char *s, int pos = 0) const;
int find_first_of(const char *s, int pos, int n) const;
int find_first_of(const string &s,int pos = 0) const;
//从pos开始查找当前串中第一个在s的前n个字符组成的数组里的字符的位置。查找失败返回string::npos
int find_first_not_of(char c, int pos = 0) const;
int find_first_not_of(const char *s, int pos = 0) const;
int find_first_not_of(const char *s, int pos,int n) const;
int find_first_not_of(const string &s,int pos = 0) const;
//从当前串中查找第一个不在串s中的字符出现的位置,失败返回string::npos
int find_last_of(char c, int pos = npos) const;
int find_last_of(const char *s, int pos = npos) const;
int find_last_of(const char *s, int pos, int n = npos) const;
int find_last_of(const string &s,int pos = npos) const;
int find_last_not_of(char c, int pos = npos) const;
int find_last_not_of(const char *s, int pos = npos) const;
int find_last_not_of(const char *s, int pos, int n) const;
int find_last_not_of(const string &s,int pos = npos) const;
//find_last_of和find_last_not_of与find_first_of和find_first_not_of相似,只不过是从后向前查找

string类的替换函数:
string &replace(int p0, int n0,const char *s);//删除从p0开始的n0个字符,然后在p0处插入串s
string &replace(int p0, int n0,const char *s, int n);//删除p0开始的n0个字符,然后在p0处插入字符串s的前n个字符
string &replace(int p0, int n0,const string &s);//删除从p0开始的n0个字符,然后在p0处插入串s
string &replace(int p0, int n0,const string &s, int pos, int n);//删除p0开始的n0个字符,然后在p0处插入串s中从pos开始的n个字符
string &replace(int p0, int n0,int n, char c);//删除p0开始的n0个字符,然后在p0处插入n个字符c
string &replace(iterator first0, iterator last0,const char *s);//把[first0,last0)之间的部分替换为字符串s
string &replace(iterator first0, iterator last0,const char *s, int n);//把[first0,last0)之间的部分替换为s的前n个字符
string &replace(iterator first0, iterator last0,const string &s);//把[first0,last0)之间的部分替换为串s
string &replace(iterator first0, iterator last0,int n, char c);//把[first0,last0)之间的部分替换为n个字符c
string &replace(iterator first0, iterator last0,const_iterator first, const_iterator last);//把[first0,last0)之间的部分替换成[first,last)之间的字符串

string类的插入函数:
string &insert(int p0, const char *s);
string &insert(int p0, const char *s, int n);
string &insert(int p0,const string &s);
string &insert(int p0,const string &s, int pos, int n);
//前4个函数在p0位置插入字符串s中pos开始的前n个字符
string &insert(int p0, int n, char c);//此函数在p0处插入n个字符c
iterator insert(iterator it, char c);//在it处插入字符c,返回插入后迭代器的位置
void insert(iterator it, const_iterator first, const_iterator last);//在it处插入[first,last)之间的字符
void insert(iterator it, int n, char c);//在it处插入n个字符c

string类的删除函数
iterator erase(iterator first, iterator last);//删除[first,last)之间的所有字符,返回删除后迭代器的位置
iterator erase(iterator it);//删除it指向的字符,返回删除后迭代器的位置
string &erase(int pos = 0, int n = npos);//删除pos开始的n个字符,返回修改后的字符串

string类的迭代器处理:
string类提供了向前和向后遍历的迭代器iterator,迭代器提供了访问各个字符的语法,类似于指针操作,迭代器不检查范围。
用string::iterator或string::const_iterator声明迭代器变量,const_iterator不允许改变迭代的内容。常用迭代器函数有:
const_iterator begin()const;
iterator begin(); //返回string的起始位置
const_iterator end()const;
iterator end(); //返回string的最后一个字符后面的位置
const_iterator rbegin()const;
iterator rbegin(); //返回string的最后一个字符的位置
const_iterator rend()const;
iterator rend(); //返回string第一个字符位置的前面
rbegin和rend用于从后向前的迭代访问,通过设置迭代器string::reverse_iterator,string::const_reverse_iterator实现

字符串流处理:
通过定义ostringstream和istringstream变量实现,#include <sstream>头文件中
例如:
string input("hello,this is a test");
istringstream is(input);
string s1,s2,s3,s4;
is>>s1>>s2>>s3>>s4;//s1="hello,this",s2="is",s3="a",s4="test"
ostringstream os;
os<<s1<<s2<<s3<<s4;

  cout<<os.str();

  
参考技术A string类对象的构造简化构造函数原型如下(注意,为了简便,把模板中最后一个默认参数省略了):1: explicit basic_string();2: string(const char *s);3: string(const char *s, size_type n);4: string(const string& str);5: string(const string& str, size_type pos, size_type n);6: string(size_type n, E c);7: string(const_iterator first, const_iterator last);string对象的操作字符串比较 支持六种关系运算符(==、!=、>、>=、<、<=),其采用字典排序策略(与C中字符串比较策略完全一样)。这六个关系运算符是非成员的重载运算符。而这些运算符都支持三种操作数组合:string op string、string op const char*、const char* op string(其中op是前面六种关系运算符中任意一种)。解释:提供运算符的三种重载版本主要是从效率角度考虑的,其避免了临时string对象的产生。 另外,string类还提供了各种重载版本的成员函数compare来比较,简化函数原型为:1: int compare(const string& str) const;2: int compare(size_type p0, size_type n0, const string& str);3: int compare(size_type p0, size_type n0, const string& str, size_type pos, size_type n);4: int compare(const char* s) const;5: int compare(size_type p0, size_type n0, const char* s) const;6: int compare(size_type p0, size_type n0, const char* s, size_type n) const; 返回值:如果调用该函数的对象的比较序列小于操作数比较序列,则返回负数;若相等,则返回0;否则,返回正数。 字符串相加
针对string类提供了非成员重载operator+,支持string对象之间、string对象与constchar*对象之间、string对象与char对象之间相加,并且operator + 两边的操作数的任意顺序都支持。简化函数原型如下:
1: string operator+ (const string& lhs, const string& rhs);2: string operator+ (const string& lhs, const char *rhs);3: string operator+ (const string& lhs, char rhs);4: string operator+ (const char *lhs, const string& rhs);5: string operator+ (char lhs, const string& rhs); 字符串赋值
字符串赋值有两种方式:一是利用成员重载运算符operator=;另外就是使用成员重载函数assign可以更加灵活地处理。这里只提供简化函数原型供参考:
1: string& operator=(char c);2: string& operator=(const char *s);3: string& operator=(const string& rhs);4: string& assign(const char *s);5: string& assign(const char *s, size_type n);6: string& assign(const string& str, size_type pos, size_type n);7: string& assign(const string& str);8: string& assign(size_type n, char c);9: string& assign(const_iterator first, const_iterator last); 字符串追加
字符串追加同样有两种方式:一是operator+=;另外就是成员函数append。简化函数原型如下:
1: string& operator+=(char c);2: string& operator+=(const char *s);3: string& operator+=(const string& rhs);4: string& append(const char *s);5: string& append(const char *s, size_type n);6: string& append(const string& str, size_type pos, size_type n);7: string& append(const string& str);8: string& append(size_type n, char c);9: string& append(const_iterator first, const_iterator last); 读取子串
获取某个下标处的字符:一是用at成员函数;另外就是用operator[]。获取子串,可以用成员函数c_str及substr,还有成员函数data和copy。简化函数原型如下:
1: reference operator[](size_type pos);2: const_reference operator[](size_type pos) const;3: reference at(size_type pos);4: const_reference at(size_type pos) const;5: 6: const char *c_str() const;7: const char *data() const;8: string substr(size_type pos = 0, size_type n = npos) const;9: size_type copy(char *s, size_type n, size_type pos = 0) const; 注意:若at函数的参数pos无效,则抛出异常out_of_range;但如果operator[]的参数pos无效,则属于未定义行为。所以at比operator[]更加安全。 其中,copy返回实际拷贝的字符数。
替换子串
成员函数replace实现替换某个子串。简化函数原型如下:
1: string& replace(size_type p0, size_type n0, const char *s); 2: string& replace(size_type p0, size_type n0, const char *s, size_type n); 3: string& replace(size_type p0, size_type n0, const string& str); 4: string& replace(size_type p0, size_type n0, const string& str, size_type pos, size_type n); 5: string& replace(size_type p0, size_type n0, size_type n, char c); 6: string& replace(iterator first0, iterator last0, const char *s); 7: string& replace(iterator first0, iterator last0, const char *s, size_type n); 8: string& replace(iterator first0, iterator last0, const string& str); 9: string& replace(iterator first0, iterator last0, size_type n, char c);10: string& replace(iterator first0, iterator last0, const_iterator first, const_iterator last); 这里,可能需要用到这几个函数得到整个字符序列:
1: const_iterator begin() const;2: iterator begin();3: const_iterator end() const;4: iterator end(); 插入字符串
成员函数insert实现在某点处插入字符串。简化函数原型如下:
1: string& insert(size_type p0, const char *s);2: string& insert(size_type p0, const char *s, size_type n);3: string& insert(size_type p0, const string& str);4: string& insert(size_type p0, const string& str, size_type pos, size_type n);5: string& insert(size_type p0, size_type n, char c);6: iterator insert(iterator it, char c);7: void insert(iterator it, const_iterator first, const_iterator last);8: void insert(iterator it, size_type n, char c); 注意:insert函数是在插入点(p0 or it)之前插入字符串。

删除子串
成员函数 erase实现删除某个子串。简化函数原型如下:
1: iterator erase(iterator first, iterator last);2: iterator erase(iterator it);3: string& erase(size_type p0 = 0, size_type n = npos); 如果指定删除的字符个数比字符串中从指定位置开始的剩余字符个数还多,那么只有这些字符被删除。
查找子串
查找子串有六种方式,分别有五类成员函数与之应。 · find 查找控制字符序列中与操作字符序列匹配的第一个子串,并返回子串的起始位置; · rfind 查找控制字符序列中与操作字符序列匹配的最后一个子串,并返回该子串的起始位置,相当于逆向查找; · find_first_of 查找控制字符序列中第一个出现在操作字符序列中的字符的位置,并返回该位置; · find_first_not_of查找控制字符序列中第一个不出现在操作字符序列中的字符的位置,并返回该位置; · find_last_of 查找控制字符序列中最后一个出现在操作序列中的字符的位置,并返回该位置; · find_last_not_of 查找控制字符序列中最后一个不出现在操作字符序列中的字符位置,并返回该位置; 如果这些函数查找失败,则返回string::npos。 其中,find函数的简化函数原型如下:
1: size_type find(char c, size_type pos = 0) const;2: size_type find(const char *s, size_type pos = 0) const;3: size_type find(const char *s, size_type pos, size_type n) const;4: size_type find(const string& str, size_type pos = 0) const; 另外的五个函数的函数原型和find的函数原型类型类似,区别在于,如果是是逆序查找的函数(rfind, find_last_of, find_last_not_of),则pos参数默认值为npos。
其它成员函数和友元函数
1: size_type capacity() const; // 返回当前字符串的存储空间大小>=size() 2: void reserve(size_type n = 0);// 预留n个元素的存储空间,保证capacity()>=n 3: bool empty() const; // 若字符串为空,返回true 4: size_type size() const; // 返回字符串长? 5: size_type length() const; // 等于size() 6: size_type max_size() const; //返回string类中字符串的最大长度 7: void resize(size_type n, char c = ' '); //若长度不够,则用c填充加长的部分;保证size()返回n 8: void swap(string& str); //两string对象交换,能在常数时间内完成(必须是使用相同allocator的两对象,这里都使用的默认的) 9: 10: // 其它非成员函数11: istream& getline(istream& is, string& str);12: istream& getline(istream& is, string& str, char delim);13: ostream& operator<<(ostream& os, const string& str);14: istream& operator>>(istream& is, const string& str); 其中,istream& getline(istream& is, string& str); 相当于istream& getline(istream& is, string& str, char delim ='\n'); getline函数在下列三种情况下结束提取: 1)遇到文件结束符; 2)遇到分隔符delim。如果第一个就是分隔符,str为空串(并且该分隔符被从流中读出丢弃),但istream测试为真; 3)如果已经提取了istream.max_size()个字符,那么提取结束,并且将调用istream.setstate(ios_base::failbit),即此时返回的istream测试为假。 如果函数没有提取到字符(包括分隔符),那么将调用istream.setstate(failbit),此时测试istream为假。 默认情况下, istream& operator>>(istream& is, const string& str);在下列三种情况下结束提取:
1)遇到文件结束符;
2)遇到空白字符(空格、Tab、换行);
3)如果已经提取了is.max_size()个字符,或者提取了is.width()(非0情况下)个字符。
如果没有提取到任何非文件结束符的字符(包括空白字符),那么将调用istream.setstate(failbit),此时测试istream为假。 例如,看看下面的循环:1: while(cin >> word) 2: 3: cout << "word read is: " << word << '\n'; 4: 要中止上面的循环应该用文件结束符:
Win——Ctrl+Z Unix——Ctrl+D
并且,应该是输入行的第一个字符就是文件结束符,然后回车才能结束循环。

C++类和对象(类的介绍用法等及this指针)详细解读

类和对象的基本概念

(class)是面向对象程序设计最基本的概念,是C++最强有力的特征,是进行封装和数据隐蔽的工具,它把数据与数据的操作紧密地结合起来,是C++封装的基本单元。

当定义了一个类之后,便可以定义该类的变量,这个变量就称为类的对象(或实例这个定义的过程也称为类的实例化。

类的定义

// 时钟类的定义如下;
// An highlighted block
class Clock
{
public:
	void setTime(int newH, int newM, int newS);
	void showTime();
private:
	int hour, minute, second;
};
// 定义类的语法形式;
// An highlighted block
class 类名称
{
public: 
	外部接口
protected:
     保护型成员
private:
	私有成员
};

对类成员访问权限的控制,是通过设置成员的访问控制属性而实现的。访问控制属性可以有以下3种:公有类型(public)私有类型(private)保护类型(protected)

公有类型成员定义了类的外部接口。公有成员用public关键字声明,在类外只能访问类的公有成员。对于时钟类,从外部只能调用setTime()和 showTime()这两个公有类型的函数成员来改变或查看时间。

在关键字private后面声明的就是类的私有成员。如果私有成员紧接着类名称v则关键字private可以省略。私有成员只能被本类的成员函数访问,来自类外部的任何访问都是非法的。这样,私有成员就完全隐蔽在类中,保护了数据的安全性。时钟类中的hour,minute和second都是私有成员。

一般情况下,一个类的数据成员都应该声明为私有成员,这样,内部数据结构就不会对该类以外的其余部分造成影响,程序模块之间的相互作用就被降低到最小

对象

类实际上一种抽象机制,它描述了一类事物的共同属性和行为。在C++中,类的对象就是该类的某一特定实体(也称实例)。例如,将整个公司的雇员看作一个类,那么每一个雇员就是该类的一个特定实体,也就是一个对象。

声明一个对象和声明一个一般变量相同,采用以下的方式:类名对象名;
例如:
clock myclock;
就声明了一个时钟类型的对象myClock。

注意,对象所占据的内存空间只是用于存放数据成员。函数成员不在每一个对象中存储副本,每个函数的代码在内存中只占据一份空间。

定义了类及其对象,就可以访问对象的成员,例如设置和显示对象myClock 的时问值。这种访问采用的是“.”操作符,访问数据成员的一般形式是:

问题:C++中struct和class的区别是什么?
答:C++需要兼容C语言,所以C++中struct可以当成结构体去使用。另外C++中struct还可以用来定义类。
和class是定义类是一样的,区别是struct的成员默认访问方式是public,class是struct的成员默认访问方式是private。

封装

面向对象的三大特性:封装、继承、多态。

在类和对象阶段,我们只研究类的封装特性,那什么是封装呢?
封装:将数据和操作数据的方法进行有机结合,隐藏对象的属性和实现细节,仅对外公开接口来和对象进行交互

封装本质上是一种管理:我们如何管理兵马俑呢?比如如果什么都不管,兵马俑就被随意破坏了。那么我们首先建了一座房子把兵马俑给封装起来。但是我们目的全封装起来,不让别人看。所以我们开放了售票通道,可以买票突破封装在合理的监管机制下进去参观。类也是一样,我们使用类数据和方法都封装到一下。不想给别人看到的,

我们使用protected/private把成员封装起来。开放一些共有的成员函数对成员合理的访问。所以封装本质是一种管理。

类的作用域

类定义了一个新的作用域,类的所有成员都在类的作用域中。在类体外定义成员,需要使用 :: 作用域解析符指明成员属于哪个类域

// 具体示例如下代码;
// An highlighted block
class Person
{
public:
	void PrintPersonInfo();
private:
	char _name[20];
	char _gender[3];
	int _age;
};
// 这里需要指定PrintPersonInfo是属于Person这个类域
void Person::PrintPersonInfo()
{
	cout << _name << " "_gender << " " << _age << endl;
}

如何计算类对象的大小

对象中只保存成员变量,成员对象放在公共代码区域,目的是节省空间。

一个类的大小,实际就是该类中”成员变量”之和,当然也要进行内存对齐,注意空类的大小,空类比较特殊,编译器给了空类一个字节来唯一标识这个类。

内存对齐

  1. 第一个成员在与结构体偏移量为0的地址处。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
  3. 注意:对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
    VS中默认的对齐数为8
  4. 结构体总大小为:最大对齐数(所有变量类型最大者与默认对齐参数取最小)的整数倍。
  5. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是
    所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

this指针

this指针的引出

// 定义一个日期类Date
// An highlighted block
#include<iostream>
using namespace std;
class Date
{
public:
	void Display()
	{
		cout << _year << "-" << _month << "-" << _day << endl;
	}

	void SetDate(int year, int month, int day)
	{
		_year = year;
		_month = month;
		_day = day;
	}
private:
	int _year; // 年
	int _month; // 月
	int _day; // 日
};
int main()
{
	Date d1, d2;
	d1.SetDate(2018, 5, 1);
	d2.SetDate(2018, 7, 1);
	d1.Display();
	d2.Display();
	system("pause");
	return 0;
}


问题:
Date类中有SetDate与Display两个成员函数,函数体中没有关于不同对象的区分,那当s1调用SetDate函数时,该函数是如何知道应该设置s1对象,而不是设置s2对象呢?

C++中通过引入this指针解决该问题,即:C++编译器给每个“非静态的成员函数“增加了一个隐藏的指针参数,让该指针指向当前对象(函数运行时调用该函数的对象),在函数体中所有成员变量的操作,都是通过该指针去访问。只不过所有的操作对用户是透明的,即用户不需要来传递,编译器自动完成。

this指针的特性

  1. this指针的类型:类类型* const
  2. 只能在“成员函数”的内部使用
  3. this指针本质上其实是一个成员函数的形参,是对象调用成员函数时,将对象地址作为实参传递给this形参。所以对象中不存储this指针。
  4. this指针是成员函数第一个隐含的指针形参,一般情况由编译器通过ecx寄存器自动传递,不需要用户传递

this指针面试题
1.this指针存在哪里?

其实编译器在生成程序时加入了获取对象首地址的相关代码。并把获取的首地址存放在了寄存器ECX中(VC++编译器是放在ECX中,其它编译器有可能不同)。也就是成员函数的其它参数正常都是存放在栈中。而this指针参数则是存放在寄存器中。类的静态成员函数因为没有this指针这个参数,所以类的静态成员函数也就无法调用类的非静态成员变量。

2.this指针可以为空吗?

可以为空,当我们在调用函数的时候,如果函数内部并不需要使用到this,也就是不需要通过this指向当前对象并对其进行操作时才可以为空(当我们在其中什么都不放或者在里面随便打印一个字符串),如果调用的函数需要指向当前对象,并进行操作,则会发生错误(空指针引用)就跟C中一样不能进行空指针的引用

// 下面程序能编译通过吗?下面程序会崩溃吗?在哪里崩溃;
// An highlighted block
#include<iostream>
using namespace std;
class A
{
public:
	void PrintA()
	{
		cout << _a << endl;
	}

	void Show()
	{
		cout << "Show()" << endl;
	}
private:
	int _a;
};
int main()
{
	
	Date *p = NULL;
	p->PrintA();
	p->Show();
}

调用成员函数PrintA时,a的地址就会传给this指针,PrintA要使用a中的成员变量_a,就需要用this指针去解引用找到_a,因为a为nullptr,所以指针越界,程序会崩溃,调用成员函数show时,a的地址就会传给this指针,因为show函数没有引用成员变量,所以就不需要使用this指针,就不会出现指针越界的情况,程序自然就能正常跑起来。

以上是关于C++中string类的详细用法的主要内容,如果未能解决你的问题,请参考以下文章

C++类和对象(类的介绍用法等及this指针)详细解读

C++类和对象(类的介绍用法等及this指针)详细解读

C++类和对象(类的介绍用法等及this指针)详细解读

C++中string类的基本用法

C++ cin 的详细用法

Android开发中Context类的作用以及Context的详细用法