大数据高可用集群环境安装与配置(09)——安装Spark高可用集群
Posted AllEmpty
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据高可用集群环境安装与配置(09)——安装Spark高可用集群相关的知识,希望对你有一定的参考价值。
1. 获取spark下载链接
登录官网:http://spark.apache.org/downloads.html 选择要下载的版本
2. 执行命令下载并安装
cd /usr/local/src/ wget http://mirrors.tuna.tsinghua.edu.cn/apache/spark/spark-2.4.4/spark-2.4.4-bin-hadoop2.7.tgz tar -zxvf spark-2.4.4-bin-hadoop2.7.tgz mv spark-2.4.4-bin-hadoop2.7 /usr/local/spark cd /usr/local/spark/conf mv spark-env.sh.template spark-env.sh
3. 修改spark-env.sh配置
vi spark-env.sh
在尾部添加下面配置,绑定hadoop的配置文件路径
export JAVA_HOME=/usr/local/java/jdk export HADOOP_CONF_DIR=/usr/local/hadoop/etc/Hadoop export SPARK_HOME=/usr/local/spark export SPARK_MASTER_PORT=7077 # 非高可用集群配置 # export SPARK_MASTER_IP=master # 高可用集群配置 export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=master:2181,master-backup:2181 -Dspark.deploy.zookeeper.dir=/spark"
4. 添加log4j.properties配置
vi log4j.properties
添加下面配置(如果要关闭控制台上打印的详细日志信息,可以将下面的INFO设置为WARN)
# Set everything to be logged to the console log4j.rootCategory=INFO, console log4j.appender.console=org.apache.log4j.ConsoleAppender log4j.appender.console.target=System.err log4j.appender.console.layout=org.apache.log4j.PatternLayout log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n log4j.rootLogger=INFO, file log4j.appender.file=org.apache.log4j.RollingFileAppender log4j.appender.file.append=true log4j.appender.file.file=${spark.yarn.app.container.log.dir}/spark.log log4j.appender.file.MaxFileSize=100MB log4j.appender.file.MaxBackupIndex=10 log4j.logger.org.apache.spark=INFO log4j.appender.file.layout=org.apache.log4j.PatternLayout log4j.appender.file.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %p [%t] %c{1}:%L - %m%n # Set the default spark-shell log level to WARN. When running the spark-shell, the # log level for this class is used to overwrite the root logger\'s log level, so that # the user can have different defaults for the shell and regular Spark apps. log4j.logger.org.apache.spark.repl.Main=WARN # Settings to quiet third party logs that are too verbose log4j.logger.org.spark_project.jetty=WARN log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO log4j.logger.org.apache.parquet=ERROR log4j.logger.parquet=ERROR # SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
5. 修改slaves配置
mv slaves.template slaves vi slaves
删除里面的localhost,添加下面配置
node1
node2
node3
6. 指定spark的主节点
mv spark-defaults.conf.template spark-defaults.conf vi spark-defaults.conf
添加下面配置
spark.master spark://master:7077,master-backup:7077 spark.yarn.jars hdfs://master:9000/spark/jars/*,hdfs://master-backup:9000/spark/jars/*
7. 修改服务器系统环境变量
所有服务器都需要按要求修改配置
vi /etc/profile
在尾部添加下面配置
export SPARK_HOME=/usr/local/spark/ export PATH=$PATH:$SPARK_HOME/bin # 这里根据具体需要进行修改,如果你运行的是python2版本的程序,则不需要修改,python3的话后面需要安装相关环境 export PYSPARK_PYTHON=/usr/local/bin/python3
保存退出后,运行命令,让配置马上生效
source /etc/profile
8. 安装插件,配置pyspark访问hbase
拷贝spark访问hbase所需要的jar到spark/jar引用文件夹
cp /usr/local/hbase/lib/hbase-*.jar /usr/local/spark/jars/
配置spark访问Phoenix
# 复制phoenix客户端插件到spark的jars目录下 cp phoenix-5.0.0-HBase-2.0-client.jar /usr/local/spark/jars/
9. spark常用插件下载
# spark读取hbase插件 # https://mvnrepository.com/artifact/org.apache.spark/spark-examples_2.11/1.6.0-typesafe-001 wget https://repo.typesafe.com/typesafe/maven-releases/org/apache/spark/spark-examples_2.11/1.6.0-typesafe-001/spark-examples_2.11-1.6.0-typesafe-001.jar cp spark-examples_2.11-1.6.0-typesafe-001.jar /usr/local/spark/jars/ # spark结构化流读取kafka数据插件 wget https://repo1.maven.org/maven2/org/apache/spark/spark-sql-kafka-0-10_2.11/2.4.4/spark-sql-kafka-0-10_2.11-2.4.4.jar cp spark-sql-kafka-0-10_2.11-2.4.4.jar /usr/local/spark/jars/ # spark streaming读取kafka数据插件 wget https://repo1.maven.org/maven2/org/apache/spark/spark-streaming-kafka-0-10_2.11/2.4.4/spark-streaming-kafka-0-10_2.11-2.4.4.jar cp spark-streaming-kafka-0-10_2.11-2.4.4.jar /usr/local/spark/jars/ # mongodb数据库连接驱动 wget https://repo1.maven.org/maven2/org/mongodb/mongo-java-driver/3.10.2/mongo-java-driver-3.10.2.jar cp mongo-java-driver-3.10.2.jar /usr/local/spark/jars/ # spark连接mongodb,进行读写操作插件 wget https://repo1.maven.org/maven2/org/mongodb/spark/mongo-spark-connector_2.11/2.4.1/mongo-spark-connector_2.11-2.4.1.jar cp mongo-spark-connector_2.11-2.4.1.jar /usr/local/spark/jars/
10. 将spark同步到其他服务器上
rsync -avz /usr/local/spark/ master-backup:/usr/local/spark/ rsync -avz /usr/local/spark/ node1:/usr/local/spark/ rsync -avz /usr/local/spark/ node2:/usr/local/spark/ rsync -avz /usr/local/spark/ node3:/usr/local/spark/
11. 启动spark
重启hbase服务
/usr/local/hbase/bin/stop-hbase.sh /usr/local/hbase/bin/start-hbase.sh
在master服务器上启动spark服务
/usr/local/spark/sbin/start-all.sh
在master-backup服务器上,启动第二个master
/usr/local/spark/sbin/start-master.sh
在master与master-backup服务器输入jps,都可以查看到Master
31681 Master
在其他服务器输入jps
28660 Worker
启动后就可以看到spark的web控制台地址了,在浏览器中输入地址访问,就可以查看到master节点的spark,Status为ALIVE,master-backup节点的spark,Status为STANDBY
12. 测试master切换
首先打开http://192.168.10.90:8080/ 与 http://192.168.10.91:8080/ 页面
在master服务器上输入jps,查看到Master服务的PID
16073 Master
然后输入命令,杀掉Master进程
kill -9 16073
运行scala(不运行的话,刷新页面看不到切换效果)
spark-shell --master spark://master:7077,master-backup:7077
接着在浏览器中刷新打开的两个页面,查看Workers是否已切换到另一台服务器上了
版权声明:本文原创发表于 博客园,作者为 AllEmpty 本文欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则视为侵权。
作者博客:http://www.cnblogs.com/EmptyFS/
以上是关于大数据高可用集群环境安装与配置(09)——安装Spark高可用集群的主要内容,如果未能解决你的问题,请参考以下文章
大数据高可用集群环境安装与配置(06)——安装Hadoop高可用集群
大数据高可用集群环境安装与配置(07)——安装HBase高可用集群
大数据高可用集群环境安装与配置(05)——安装zookeeper集群
大数据高可用集群环境安装与配置(08)——安装Ganglia监控集群