Hadoop之WordCount

Posted 不像话

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop之WordCount相关的知识,希望对你有一定的参考价值。

求平均数是MapReduce比较常见的算法,求平均数的算法也比较简单,一种思路是Map端读取数据,在数据输入到Reduce之前先经过shuffle,将map函数输出的key值相同的所有的value值形成一个集合value-list,然后将输入到Reduce端,Reduce端汇总并且统计记录数,然后作商即可。具体原理如下图所示:

系统环境

Linux Centos 7

jdk 1.8

hadoop-3.2

IDEA代码编译器

实验任务:

求平均数是MapReduce比较常见的算法,求平均数的算法也比较简单,一种思路是Map端读取数据,在数据输入到Reduce之前先经过shuffle,将map函数输出的key值相同的所有的value值形成一个集合value-list,然后将输入到Reduce端,Reduce端汇总并且统计记录数,然后作商即可。具体原理如下图所示:

商品分类 商品点击次数
52127    5
52120    93
52092    93
52132    38
52006    462
52109    28
52109    43
52132    0
52132    34
52132    9
52132    30
52132    45
52132    24
52009    2615
52132    25
52090    13
52132    6
52136    0
52090    10
52024    347

要求使用mapreduce统计出每类商品的平均点击次数。

结果数据如下:

商品分类 商品平均点击次数
52006    462
52009    2615
52024    347
52090    11
52092    93
52109    35
52120    93
52127    5
52132    23
52136    0

步骤:

1.切换到指定目录,启动集群

  开启hadoop集群,本地安装的为高可用主从二节点的hadoop集群,集成了各项大数据组件。

  先开启zookeeper,再开启hdfs,再开启yarn。

  倘若本地安装的是普通分布式或伪分布式集群,直接./start-all.sh启动集群即可。

2.在linux将数据集上传到hdfs中

hadoop fs -mkdir -p /mymapreduce4/in  
hadoop fs -put /data/mapreduce4/goods_click /mymapreduce4/in 
10181    1000481    2010-04-04 16:54:31
20001    1001597    2010-04-07 15:07:52
20001    1001560    2010-04-07 15:08:27
20042    1001368    2010-04-08 08:20:30
20067    1002061    2010-04-08 16:45:33
20056    1003289    2010-04-12 10:50:55
20056    1003290    2010-04-12 11:57:35
20056    1003292    2010-04-12 12:05:29
20054    1002420    2010-04-14 15:24:12
20055    1001679    2010-04-14 19:46:04
20054    1010675    2010-04-14 15:23:53
20054    1002429    2010-04-14 17:52:45
20076    1002427    2010-04-14 19:35:39
20054    1003326    2010-04-20 12:54:44
20056    1002420    2010-04-15 11:24:49
20064    1002422    2010-04-15 11:35:54
20056    1003066    2010-04-15 11:43:01
20056    1003055    2010-04-15 11:43:06
20056    1010183    2010-04-15 11:45:24
20056    1002422    2010-04-15 11:45:49
20056    1003100    2010-04-15 11:45:54
20056    1003094    2010-04-15 11:45:57
20056    1003064    2010-04-15 11:46:04
20056    1010178    2010-04-15 16:15:20
20076    1003101    2010-04-15 16:37:27
20076    1003103    2010-04-15 16:37:05
20076    1003100    2010-04-15 16:37:18
20076    1003066    2010-04-15 16:37:31
20054    1003103    2010-04-15 16:40:14
20054    1003100    2010-04-15 16:40:16

3.创建java工程,将jar包导入进去

  为了避免版本冲突,和不必要的麻烦,可将hadoop目录下share/hadoop文件中的所有jar包导入进去。

Mapper代码<<<<
public
static class Map extends Mapper<Object , Text , Text , IntWritable>{ private static Text newKey=new Text(); //实现map函数 public void map(Object key,Text value,Context context) throws IOException, InterruptedException{ // 将输入的纯文本文件的数据转化成String String line=value.toString(); System.out.println(line); String arr[]=line.split("\\t"); newKey.set(arr[0]); int click=Integer.parseInt(arr[1]); context.write(newKey, new IntWritable(click)); } }
Reduce代码<<<<<
public
static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable>{ //实现reduce函数 public void reduce(Text key,Iterable<IntWritable> values,Context context) throws IOException, InterruptedException{ int num=0; int count=0; for(IntWritable val:values){ num+=val.get(); //每个元素求和num count++; //统计元素的次数count } int avg=num/count; //计算平均数 context.write(key,new IntWritable(avg)); } }

完整代码如下:

package mapreduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class MyAverage{
    public static class Map extends Mapper<Object , Text , Text , IntWritable>{
    private static Text newKey=new Text();
    public void map(Object key,Text value,Context context) throws IOException, InterruptedException{
    String line=value.toString();
    System.out.println(line);
    String arr[]=line.split("\\t");
    newKey.set(arr[0]);
    int click=Integer.parseInt(arr[1]);
    context.write(newKey, new IntWritable(click));
    }
    }
    public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable>{
    public void reduce(Text key,Iterable<IntWritable> values,Context context) throws IOException, InterruptedException{
        int num=0;
        int count=0;
        for(IntWritable val:values){
        num+=val.get();
        count++;
        }
        int avg=num/count;
        context.write(key,new IntWritable(avg));
        }
        }
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException{
        Configuration conf=new Configuration();
        System.out.println("start");
        Job job =new Job(conf,"MyAverage");
        job.setJarByClass(MyAverage.class);
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);
        Path in=new Path("hdfs://localhost:9000/mymapreduce4/in/goods_click");
        Path out=new Path("hdfs://localhost:9000/mymapreduce4/out");
        FileInputFormat.addInputPath(job,in);
        FileOutputFormat.setOutputPath(job,out);
        System.exit(job.waitForCompletion(true) ? 0 : 1);

        }
        }

4.执行

  执行方式有两种

  ①直接在本地运行,前提要在本地配置好hadoop环境变量,直接运行即可。

  ②将此文件打包成jar包,上传到linux中再,用命令运行。

hadoop jar /apps/hadoop/hadoop-mapreduce.jar wordcount /in /out  

查看运行结果:

hadoop fs -ls /mymapreduce4/out
hadoop fs -cat /mymapreduce4/out/part-r-00000

 

 

以上是关于Hadoop之WordCount的主要内容,如果未能解决你的问题,请参考以下文章

Hadoop MapReduce编程 API入门系列之wordcount版本5

Hadoop世界中的HelloWorld之WordCount具体分析

Hadoop本地运行模式之Grep案例WordCount案例

Hadoop之WordCount详解

hadoop之运行官方实例二--WordCount

hadoop之wordCount详解